内含Jeff Heaton的三本关于神经网络的英文书: (1)《Introduction to Neural Networks for Java, 2nd Edition》; (2)《Introduction to neural networks for c# Second Edtion》; (3)《Introduction to the Math of Neural Network》
2024-01-13 12:19:49 6.76MB Neural Networks Java/C# Jeff
1
A step-by-step gentle journey through the mathematics of neural networks, and making your own using the Python computer language. Neural networks are a key element of deep learning and artificial intelligence, which today is capable of some truly impressive feats. Yet too few really understand how neural networks actually work. This guide will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. You won't need any mathematics beyond secondary school, and an accessible introduction to calculus is also included. The ambition of this guide is to make neural networks as accessible as possible to as many readers as possible - there are enough texts for advanced readers already! You'll learn to code in Python and make your own neural network, teaching it to recognise human handwritten numbers, and performing as well as professionally developed networks. Part 1 is about ideas. We introduce the mathematical ideas underlying the neural networks, gently with lots of illustrations and examples. Part 2 is practical. We introduce the popular and easy to learn Python programming language, and gradually builds up a neural network which can learn to recognise human handwritten numbers, easily getting it to perform as well as networks made by professionals. Part 3 extends these ideas further. We push the performance of our neural network to an industry leading 98% using only simple ideas and code, test the network on your own handwriting, take a privileged peek inside the mysterious mind of a neural network, and even get it all working on a Raspberry Pi. All the code in this has been tested to work on a Raspberry Pi Zero.
2024-01-13 11:04:46 4.97MB neural netwo machine lear
1
歌词条件下的神经旋律生成(在演示)。 2020年9月19日,@@@:可以从下载完整的歌词旋律源。 2020年9月17日,@@@:更新了读者的答案,并发布了此工作的更新版本在多媒体计算中ACM交易接受了共享通信与应用(TOMCCAP),2021年。@ 2020年2月14日:发布了用于歌词生成的常规LSTM-GAN编码, 为 如果您使用我们的歌词旋律数据集和歌词嵌入(包括在我们的歌词数据集中经过专门训练的跳码mdoel和BERT模型),请引用我们的论文“用于从歌词生成旋律的有条件LSTM-GAN”,网址为 ,在2021年被ACM多媒体计算通信和应用交易记录(TOMCCAP)接受。您可以找到我们在本文的主观评估中使用的12种旋律(melodies_experiment.zip)。 这12种旋律分别通过基线方法,LSTM-GAN和基本事实生成。 -基线方法:bas1-4--; --LSTM-GA
2023-12-06 17:18:57 583.79MB JupyterNotebook
1
墨西哥帽子matlab代码神经网络算法 用MATLAB编写的神经网络算法 hebbian.m 该代码采用输入向量,权重,学习常数,并在每个阶段绘制更新后的权重 净额 代码将两个矩阵相乘 BAM_network.m 这个Matlab代码在以5x3的矩阵制作时为英语alphabects训练了双向联想存储网络的权重。 max_net.m 基于竞争的神经网络的具体示例。 可以用作子网来选择输入量最大的节点。 max_hat.m 该matlab代码采用以下参数输入n个输入神经元:->互连区域的半径->具有正互连的区域的半径->恒定c1->恒定c2->外部信号。 该代码对这些输入神经元执行墨西哥帽算法,并执行所需的次数。 hamming_net.m 这些网络可用于查找最接近双极性输入向量x的示例。 索姆 此代码已演示了Kohonen自组织图,也称为拓扑保留图算法。 lvq.m 该代码显示了线性向量量化算法的工作原理。 目前,代码将2类分类。 将对代码进行进一步的改进。 感知器 该代码显示了用于逻辑门的感知器学习算法的实现。 在最初阶段,已实现了“与门”,其输入值和目标输出可在代码中轻松修改。 它采
2023-11-26 17:31:59 7KB 系统开源
1
LazyProgrammer, "Convolutional Neural Networks in Python: Master Data Science and Machine Learning with Modern Deep Learning in Python, Theano, and TensorFlow" 2016 | ASIN: B01FQDREOK | 52 pages | EPUB | 1 MB This is the 3rd part in my Data Science and Machine Learning series on Deep Learning in Python. At this point, you already know a lot about neural networks and deep learning, including not just the basics like backpropagation, but how to improve it using modern techniques like momentum and adaptive learning rates. You've already written deep neural networks in Theano and TensorFlow, and you know how to run code using the GPU. This book is all about how to use deep learning for computer vision using convolutional neural networks. These are the state of the art when it comes to image classification and they beat vanilla deep networks at tasks like MNIST. In this course we are going to up the ante and look at the StreetView House Number (SVHN) dataset - which uses larger color images at various angles - so things are going to get tougher both computationally and in terms of the difficulty of the classification task. But we will show that convolutional neural networks, or CNNs, are capable of handling the challenge! Because convolution is such a central part of this type of neural network, we are going to go in-depth on this topic. It has more applications than you might imagine, such as modeling artificial organs like the pancreas and the heart. I'm going to show you how to build convolutional filters that can be applied to audio, like the echo effect, and I'm going to show you how to build filters for image effects, like the Gaussian blur and edge detection. After describing the architecture of a convolutional neural network, we will jump straight into code, and I will show you how to extend the deep neural networks we built last time with just a few new functions to turn them into CNNs. We will then test their performance and show how convolutional neural networks written in both Theano and TensorFlow can outperform the accuracy of a plain neural network on the StreetView House Number dataset.
2023-10-26 06:03:37 1.21MB Python Neural Network
1
总共1000多页,很好的资料,着重讲DL4J。
2023-10-24 12:53:43 11.53MB Java Deep Learning
1
For graduate-level neural network courses offered in the departments of Computer Engineering, Electrical Engineering, and Computer Science. Renowned for its thoroughness and readability, this well-organized and completely up-to-date text remains the most comprehensive treatment of neural networks from an engineering perspective. Refocused, revised and renamed to reflect the duality of neural networks and learning machines, this edition recognizes that the subject matter is richer when these topics are studied together. Ideas drawn from neural networks and machine learning are hybridized to perform improved learning tasks beyond the capability of either independently.
2023-10-07 23:06:25 13.71MB 机器学习 神经网络 深度学习
1
用于文档图像变形的门控和分叉堆叠式U-Net模块 捕获文档图像是记录它们的最简单,最常用的方法之一。 但是,这些图像是在手持设备的帮助下捕获的,通常会导致难以消除的不良失真。 我们提出了一个监督的门控和分叉堆叠式U-Net模块,以预测变形网格并从输入中创建无失真的图像。 在对网络进行人工合成的文档图像训练时,将根据真实世界的图像来计算结果。 我们方法的新颖性不仅存在于U-Net的分叉中,以帮助消除网格坐标的混合,而且还存在于使用门控网络的情况下,该门控网络为模型增加了边界和其他分钟线级别的细节。 我们提出的端到端流水线仅在先前方法中使用的数据的8%进行训练后,就可以在DocUNet数据集上实现最新的性能。 要求 所需的软件包: 火炬(> 1.4.0) 火炬视觉(> 0.6.0) numpy(> 1.18.4) 要安装所有必需的软件包,请使用pip install -r requir
1
利用Neural Renderer神经网络渲染器实现3D模型渲染
2023-07-06 09:23:23 1.3MB 人工智能
1
文件包里包含关于SNN最新技术的相关文档
2023-06-09 11:20:42 5.16MB SNN FPGA
1