rtsp传输h264和h265视频推流c代码,亲测可用 修改成h265发送:需要修改这里,其他底层的都改好了 (1)strcat(pDescr,"H264/90000");//strcat(pDescr,"H265/90000"); //h265 (2)//建立RTP套接字 h264 /h265 _h264nalu / _h265nalu rtp_s->hndRtp = (struct _tagStRtpHandle*)RtpCreate((unsigned int)(((struct sockaddr_in *)(&pRtsp->stClientAddr))->sin_addr.s_addr), Transport.u.udp.cli_ports.RTP, _h265nalu); (3)以及fifo写入数据,fifo.c里面有函数h265接口调用,HisiPutH265DataToBuffer
2024-08-20 09:23:42 2.06MB rtsp推流
1
【标题解析】 "NCExplorer安装包-C5三菱电脑与机台传输软件" 这个标题揭示了我们讨论的核心是一款名为NCExplorer的软件,它专为C5型号的三菱计算机设计,用于实现与数控机床(CNC)之间的数据传输。NCExplorer可能是这款软件的主程序或客户端,用于在电脑与数控设备之间交换加工程序、设置参数或其他相关数据。 【描述详解】 "CNC三菱电脑与机台传输软件" 描述进一步明确了NCExplorer的功能,即在CNC(计算机数控)系统中,尤其是在三菱的控制平台上,它作为一个关键工具帮助用户方便地在电脑和数控机床之间进行文件交互。这种传输可能包括G代码程序、配置设置、工件坐标或者诊断信息等。 【标签分析】 "软件/插件" 的标签表明NCExplorer可能是一个独立的应用程序,也可能是一个与三菱CNC控制系统配套使用的插件或组件。这意味着它可能需要在用户的电脑上安装特定环境,如三菱的开发环境或控制面板,才能正常运行。同时,它也可能具备与其他软件集成的能力,扩展数控系统的功能。 【压缩包子文件的文件名称列表】 "BND_1217W100_C5\NCExplorer.exe" 这个文件名中,“BND”可能代表捆绑或包的含义,而“1217W100”可能是软件版本号或者是特定的设备型号,与C5相呼应,表示该版本是为特定的三菱CNC系统优化的。".exe"后缀则表明这是一可执行文件,即安装程序,用户可以通过运行这个文件来安装NCExplorer软件。 综合以上信息,我们可以了解到NCExplorer是三菱CNC系统的一个重要组成部分,主要用于数据交换。用户可以使用它将编程指令上传到数控机床,或者下载机床的运行日志和状态信息。软件可能包含配置、模拟、诊断等多种功能,以支持高效、准确的数控加工。在安装和使用时,确保电脑满足必要的系统要求,并遵循正确的安装步骤,以确保软件能够正确运行并与数控设备无缝配合。
2024-08-18 23:50:39 5.36MB
1
【三菱M70/M80程序传输软件】是一款专为三菱M70和M80系列数控系统设计的高效、稳定的程序传输工具。这款软件具备跨操作系统的能力,兼容Windows 7、8、10以及11,确保了用户在不同Windows版本环境下都能顺利进行机床程序的上传与下载。 软件的稳定性是其一大亮点。在编程和生产环境中,稳定的程序传输至关重要,因为任何中断都可能导致生产延误或数据丢失。三菱M70/M80程序传输软件的稳定性能确保了数据传输过程的顺畅,降低了因软件问题引起的故障率。 该软件在局域网内的自动IP识别功能简化了用户的操作流程。在传统的机床通信中,用户通常需要手动输入机床的IP地址来建立连接,而这款软件能自动识别网络中的机床设备,极大地减少了人工设置的繁琐步骤,提高了工作效率。 此外,对于不熟悉网络设置的用户来说,这是一项极其友好的设计。它消除了可能存在的网络配置障碍,使用户能够快速、轻松地开始使用软件,不论他们的技术水平如何。 在【压缩包子文件的文件名称列表】中,我们看到一个名为`BND-1217W100-C6\NCExplorer.exe`的文件。这个文件很可能是软件的主执行程序,"NCExplorer.exe"可能代表“数控探索者”或者“数控浏览器”,暗示该程序用于浏览和管理数控机床的程序。"BND-1217W100-C6"可能是软件的一个特定版本号或者发行代码,这表明了软件的具体版本,帮助用户和开发者追踪和管理不同版本的更新。 三菱M70/M80程序传输软件提供了一个直观且高效的工作环境,使得编程人员和操作工能够在不同的Windows系统下便捷地与三菱M70和M80系列机床进行通信。自动IP识别功能和简洁的操作界面大大降低了用户的学习曲线,提升了整体的生产效率。无论是对于日常的加工任务,还是进行复杂的程序调试,这款软件都是三菱机床用户的得力助手。
2024-08-07 20:32:51 11.07MB
1
全国通信专业技术人员职业水平考试参考用书:通信专业实务-传输与接入
1
本方案是昆仑通态触摸屏与4台DTD433FC无线模拟量信号测试终端进行无线 Modbus通信的实现方法。本方案中昆仑通态触摸屏作为主站显示各从站的模拟量信号,传感器、DCS、PLC、智能仪表等4个设备作为Modbus从站输出模拟量信号。方案中采用达泰电子无线模拟量信号测控终端——DTD433FC与达泰电子无线通信数据终端——DTD433MC,作为实现无线通讯的硬件设备。 无线系统构成示意图 ▼ 通过西安达泰电子 DTD433FC和DTD433MC可以很方便的实现无线 MODBUS 主从网络,无需更改网络参数和设备程序,可以直接替换有线连接。 一、测试设备与参数 1.硬件环境搭建 l昆仑通态触摸屏TPC7062TD *1台 l模拟量信号发生器*20个(实际使用中为用户模拟量输出设备) l无线数据终端(主站设备)DTD433MC*1块 l无线模拟量信号测控终端(从站设备)DTD433FC-4 *3块,DTD433FC-8 *1块 2. 测试参数 l通讯协议:Modbus RTU协议 l主从关系:1主4从 l主站通
1
在IT领域,尤其是在网络通信和图像处理中,有时我们需要传输大量的数据,比如高分辨率的图像。在这种情况下,由于TCP协议的可靠性和流量控制,可能会导致传输效率低下,特别是在实时性要求较高的场景。这时,我们可以考虑使用UDP(User Datagram Protocol)协议,它提供了更快的数据传输速度,但不保证数据包的顺序和完整性。QT框架提供了一种方便的方式来处理UDP通信,本篇文章将深入探讨如何使用QT通过UDP分包传输大图像。 我们要理解UDP的特点。UDP是一种无连接的协议,每个数据包都独立发送,没有握手过程,也没有错误检测和重传机制。因此,对于大文件或图像的传输,我们需要自己实现这些功能,例如包的分割、重组、错误检测等。 在QT中,我们可以使用`QTcpSocket`的替代——`QUdpSocket`来处理UDP通信。`QUdpSocket`允许我们发送和接收UDP数据包,但不负责数据包的顺序和可靠性。为了传输大图像,我们需要将图像文件拆分成多个小的数据包,并在每个数据包中附加一些额外的信息,如序列号和总包数,以便在接收端重新组装。 发送端的实现: 1. 打开图像文件并读取其内容。 2. 计算图像数据的总大小,确定需要分割的包数量。 3. 对图像数据进行分块,每块不超过UDP的数据包最大限制(通常为64KB)。 4. 为每个数据包添加序列号和总包数信息,可以使用自定义的头部结构。 5. 使用`QUdpSocket`的`writeDatagram()`函数发送每个数据包,目标是接收端的IP地址和端口号。 接收端的实现: 1. 创建一个`QUdpSocket`实例,绑定到本地的特定端口,用于接收数据包。 2. 在接收端,我们需要监听`readyRead()`信号,当有数据到达时,调用`readDatagram()`读取数据包。 3. 解析接收到的数据包,提取序列号、总包数和图像数据。 4. 将接收到的图像数据块按序列号存储,直到收集到所有包。 5. 重组图像数据,根据总包数信息确定原始图像的大小,然后创建一个新的图像文件并写入重组后的数据。 在上述过程中,我们需要注意的是,由于UDP的特性,可能会出现丢包或乱序的情况,所以需要在接收端实现重试和错误检测机制。例如,可以通过设置超时时间,如果在一定时间内没有接收到特定序列号的数据包,可以请求发送端重新发送。此外,还可以使用校验和或者更复杂的错误检测算法(如CRC)来检测数据包在传输过程中是否被破坏。 在提供的压缩包文件中,`QTUDPRecv`和`QTUDPSend`很可能是实现上述功能的源代码示例。分析这两个文件,我们可以深入理解如何在实际项目中应用上述理论知识,进行大图像的UDP分包传输。这不仅有助于提高传输效率,也能帮助我们掌握QT在网络编程中的高级应用。
2024-07-16 14:19:19 6.82MB udp
1
介绍了矿用多功能WiFi信号转换器的组成及信号的转换方式。该转换器可通过天线收发无线信号,可实现无线信号与RS485口、以太网口、传感器接口和语音接口等有线信号的相互转换,方便地完成了煤矿井下各种监控设备接口之间的互联,有效解决了各种监控系统和通信系统之间的兼容性问题。
1
提供了“matlab GUI与Simulink数据传输”博客对应的全套文件
2024-07-01 18:58:05 44KB matlab
1
【正文】 《数字频带传输系统仿真及性能分析——QPSK及循环码》 本文主要探讨了数字频带传输系统中的两种关键技术:QPSK(正交相移键控)调制解调和循环码的应用。QPSK是一种高效的数字调制方式,常用于无线通信、卫星通信和有线电视系统,具有良好的抗干扰性能和较高的频谱利用率。 QPSK通信系统的基本工作原理是,通过改变载波的相位来表示数字信息。在QPSK系统中,数据源通常采用随机生成的方式,以模拟实际通信环境中的不确定性和随机性。信源编码阶段,本文采用了差分编码,这种编码方式能有效地改善系统的抗干扰能力。差分编码分为传号差分码和空号差分码,前者在输入为“1”时产生电平跳变,后者则在输入为“0”时发生跳变。编码后的信号经过QPSK调制器,与发送滤波器结合后进入传输信道,信道模型包括加性高斯白噪声和多径Rayleigh衰落,以模拟真实世界的通信条件。 接收端,信号首先经过相位旋转,然后通过匹配滤波器进行解调,接着通过阈值比较得到未解码的接收信号。差分译码器用于恢复原始信息,通过与发送信号比较计算误码率。为了评估系统性能,还会计算理论误码率并与实际结果对比。 QPSK调制解调过程的仿真环节,信号源选择的是伯努利二进制随机信号。调制过程中,输入基带信号经过串并变换、单/双极性转换,然后与0相位和π相位的正弦载波相干调制,最终形成QPSK信号。解调时,QPSK信号与相同相位的载波进行相干解调,再经过低通滤波处理,恢复原始信息。 循环码在QPSK系统中的应用主要是作为错误检测和纠正的一种手段。循环码具有优良的纠错能力,能够在一定程度上确保信息传输的准确性。在传输过程中,由于噪声和信道效应导致的错误可以通过循环码的校验和纠正机制得到修复。 总的来说,本文深入研究了QPSK通信系统的工作原理和性能分析,通过仿真实现了QPSK调制解调,并结合差分码和循环码进行了系统优化,对于理解数字频带传输系统的复杂性和提升通信质量具有重要的理论价值和实践意义。
2024-07-01 15:53:07 2.85MB
IEC62055-41 电能表预付费系统-标准传输规范(STS) 中文版.pdf
2024-06-24 10:47:00 2.23MB IEC62055-41
1