基于时序的多笔划草图识别,尹建锋,孙正兴,本文提出乐一个基于手绘草图过程时序信息的多笔划草图识别方法。该方法的主要思想是基于时序的笔划分割和基于时序的用户建模。前
2024-03-28 22:02:06 326KB 首发论文
1
情绪识别:通过面部表情和语音进行双峰情绪识别
2024-03-04 20:54:19 161KB matlab face-detection emotion-recognition
1
一种高选择性的银的荧光探针,党方方,雷克微,合成了3,3,7,7-四[N-乙基-N-苄基(乙酰胺)-2-氧甲基]-5-氧基壬烷 (EBAOO)及其铽的配合物,配合物的单晶结构如下:[Tb(EBAOO)]2[Tb(NO3)5]3•H2O,
2024-02-26 11:15:51 549KB 首发论文
1
很经典的参考书。 1 Introduction 2 Probability Distributions 3 Linear Models for Regression 4 Linear Models for Classification 5 Neural Networks 6 Kernel Methods 7 Sparse Kernel Machines 8 Graphical Models 9 Mixture Models and EM 10 Approximate Inference 11 Sampling Methods ...
2023-12-14 23:37:53 8.6MB Pattern Recognition Machine
1
人脸识别--- ResNet 使用opencv和dlib构建人脸识别系统 安装dlib: 点安装dlib == 19.6.1 安装opencv:pip安装opencv-python 向下数据( ) dlib_face_recognition_resnet_model_v1.dat.bz2 mmod_human_face_detector.dat.bz2 shape_predictor_68_face_landmarks.dat.bz2
2023-04-30 11:19:49 7KB Python
1
使用人脸识别的考勤管理系统 :laptop: 该项目涉及构建一个考勤系统,该系统利用面部识别来标记员工的在场,进场和超时。 它涵盖了面部检测,对齐和识别等领域,还开发了一个Web应用程序以迎合系统的各种用例,例如新员工注册,将照片添加到培训数据集中,查看出勤报告等。该项目旨在替代传统的手动考勤系统。 它可用于对安全至关重要的公司办公室,学校和组织中。 该项目旨在自动化传统的考勤系统,其中手动标记了考勤。 它还使组织能够以数字方式维护其记录,例如准时,缺勤,休息时间和出勤。 系统的数字化也将有助于使用图形显示编号来更好地可视化数据。 今天在场的员工人数,每位员工的总工作时间及其休息时间。 它的附加功能可以有效地升级和替换传统的考勤系统。 项目范围 :rocket: 面部识别在我们的社会中正变得越来越重要。 它在安全领域取得了重大进展。 它是一种非常有效的工具,可以帮助低级执行者识别犯罪分子,软件公司正在利用该技术来
2023-04-20 18:20:03 33.78MB python django scikit-learn python3
1
本资源包含Pattern Recognition And Machine Learning的英文版和由马春鹏翻译的中文版。
2023-04-13 21:42:41 17.77MB 模式识别
1
PyRecognizer 一个简单的人脸识别引擎 火车/预测视频指南 模型为一些名人调整 以下列表包含名人的姓名和用于训练的照片数,按照片数排序 名人名单George_W_Bush 530 Colin_Powell 236 Tony_Blair 144 Donald_Rumsfeld 121 Gerhard_Schroeder 109 Ariel_Sharon 77 Hugo_Chavez 71 Junichiro_Koizumi 60 Jean_Chretien 55 John_Ashcroft 53 Serena_Williams 52 Jacques_Chira
2023-04-11 09:46:06 33.01MB photos neural-network rest-api facial-recognition
1
朝鲜语字符识别 概述 该项目正在建立一个模型,以使用VGG-19和Inception V3模型识别2,350个手写的韩文标签。 超过2,000,000个手写字符图像用于训练模型。 入门 安装python库。 (请参阅requirements.txt)pip install -r requirements.txt 下载日期集您可以在许可下下载数据集。 在此代码中使用了PyTorch。 我们可以使用TensorBoard在PyTorch中进行可视化。 有关更多信息,请访问 。 这个怎么运作 预处理图像 当模型需要一致的输入大小时,图像的分辨率会有所不同。 我们需要消除图像中的噪点并裁剪图像。 有四个步骤对图像进行预处理,以将其输入到模型中。 使用中值滤镜消除图像中的噪点 在[0,1]范围内归一化图像像素 裁剪图像 将VGG-19的图像大小调整为224 x 224,对于Inception
2023-04-06 13:48:52 1.52MB Python
1
在这个项目中,我将对15个场景数据库(Bedroom、Coast、Forest、Highway、Industrial、InsideCity、Kitchen、LivingRoom、Mountain、Office、OpenCountry、Store、Street、Suburb、TallBuilding)进行训练和测试,借助HOG特征提取构建词袋模型,并利用集成学习分类器实现场景识别。 最邻近分类器:准确率(55.0%) 随机森林分类器:准确率(69.1%) 直方图梯度提升分类器:准确率(72.1%) 线性支持向量机分类器:准确率(72.7%) Ours:准确率(74.2%)
2023-04-06 11:06:26 85.35MB 计算机视觉 场景识别 词袋模型
1