协同过滤算法(Collaborative Filtering)是一种经典的推荐算法,其基本原理是“协同大家的反馈、评价和意见,一起对海量的信息进行过滤,从中筛选出用户可能感兴趣的信息”。它主要依赖于用户和物品之间的行为关系进行推荐。 协同过滤算法主要分为两类: 基于物品的协同过滤算法:给用户推荐与他之前喜欢的物品相似的物品。 基于用户的协同过滤算法:给用户推荐与他兴趣相似的用户喜欢的物品。 协同过滤算法的优点包括: 无需事先对商品或用户进行分类或标注,适用于各种类型的数据。 算法简单易懂,容易实现和部署。 推荐结果准确性较高,能够为用户提供个性化的推荐服务。 然而,协同过滤算法也存在一些缺点: 对数据量和数据质量要求较高,需要大量的历史数据和较高的数据质量。 容易受到“冷启动”问题的影响,即对新用户或新商品的推荐效果较差。 存在“同质化”问题,即推荐结果容易出现重复或相似的情况。 协同过滤算法在多个场景中有广泛的应用,如电商推荐系统、社交网络推荐和视频推荐系统等。在这些场景中,协同过滤算法可以根据用户的历史行为数据,推荐与用户兴趣相似的商品、用户或内容,从而提高用户的购买转化率、活跃度和社交体验。 未来,协同过滤算法的发展方向可能是结合其他推荐算法形成混合推荐系统,以充分发挥各算法的优势。
2024-06-07 13:05:38 5KB 协同过滤算法
1
基于灰狼算法(GWO)优化门控循环单元(GWO-GRU)的时间序列预测。 优化参数为学习率,隐藏层节点个数,正则化参数,要求2020及以上版本。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-06-06 19:57:03 27KB
1
预警车正常是在指定的区域线路上进行巡检,通过超声波进行避障,当需要到另外一个区域巡检或者到指定地点执行任务时,需要一个最优路径算法。如图7,作为医疗场所的剖面图,对占有面积的“小车区域”使用广度优先搜索的方法,从起点开始上下左右四方向搜索,就如同小车在图像中运动一样,搜索步长设置为车身的像素长度;即只移动小车的中心点,然后通过检查小车面积占据的方位内,是否有像素点为 0 来判断小车是否碰到障碍,将没有障碍位置的可行路径进行标记,同时记录到达该点的前一个点的坐标。如果判断小车行驶到终点则退出搜索,然后通过回溯得到从起点至终点的最短路径。将起点的灰度像素值设置为(255 + 127)/ 2 = 191,相对的,终点像素设置为(255 - 127)/ 2 = 64,这里的191、64没有额外的含义,只是用来表示区分,再通过BFS算法得到的路径,就是整个地图的最短路径。
1
适合新手学习,注释全面。定点选址问题是寻找最佳位置来满足一定条件或最小化某种成本的问题,常见的应用包括设施选址、网络规划等。 下面是使用粒子群算法解决定点选址问题的一种基本方法: 1. 定义目标函数 2. 初始化粒子群 3. 计算适应度值 4. 更新个体最优解和群体最优解 5. 更新速度和位置 6. 判断停止条件 7. 重复步骤3-6,直到满足停止条件。 通过迭代更新粒子的位置和速度,粒子群算法可以逐步逼近最佳解决方案。最终得到的群体最优解即为选址问题的最佳解决方案。 需要注意的是,粒子群算法的效果受到许多因素的影响,例如粒子数目、速度更新公式、停止条件的设置等。为了获得更好的结果,可能需要适当调整算法的参数和初始值,并进行多次实验以找到最优的设置。 此外,对于特定的定点选址问题,也可以根据问题特点进行问题的建模和算法的改进,以提高算法的性能和效果。
2024-06-05 14:24:58 52KB matlab
1
对不起,之前上传的那个RSA的实现代码,在上传时传的是空文档。现在纠正过来,sorry~
2024-06-05 11:30:06 4KB java rsa 加密算法
1
基于鲸鱼算法优化BP神经网络(WOA-BP)的时间序列预测,matlab代码。 模型评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-06-04 19:58:40 27KB 神经网络 matlab
1
3维点云的配准基本算法,基于pcl库的icp算法程序
2024-06-03 15:23:54 698KB icp算法 点云算法 点云配准
关于介绍点云配准的文章,可以进行相关方面的初步了解。
2024-06-03 15:23:13 1.46MB ICP算法 点云配准
基于内容的新闻推荐系统 实现功能 (1)前台功能模块 前台用户可以进行分类查看各模块下的新闻概要列表并显示基于新闻评论量推荐的新闻列表,点击新闻 封面、标题等可直接进入新闻详情页进行阅读、评论,显示基于词语的新闻推荐列表,搜索框输入来搜 索感兴趣的新闻。 (2)后台功能模块后台管理主要包括系统设置、用户列表管理、系统日志以及新闻管理四个模块。系统设置里面包括进行 菜单按钮增删改查的菜单管理、增删改角色信息的角色管理和修改密码;用户信息管理里面包含了一个 详细的用户信息可以对每个人的详细资料进行了增删或者修改操作;系统日志里面包含了一个日志清 单,可以对日志进行增删操作;新闻管理模块里包括进行增删改查分类信息的分类管理、增删改查新闻 的标题、封面等信息的新闻管理以及增删改新闻的任意一条评论的评论管理。 1、技术栈 Java EE 、Mysql8.0 、 Spring SpringMVC Mybatis JavaScript、 EasyUI、 TF-IDF算法 2、推荐算法 基于内容推荐算法: TF-IDF 基本原理:根据用户的浏览行为,获得用户的兴趣偏好度,为用户推荐跟他
2024-06-02 13:31:31 141.36MB java 推荐算法 新闻推荐系统 推荐系统
1