delphi 以图找图,做的一个外星世界的工具,通过预先截好的图去查找屏幕
2021-11-29 12:04:43 4.08MB delphi 找图 findBmp 游戏工具
1
这是重庆大学数据结构实验报告,题目是串的操作与KMP模式匹配算法。里面有完整的实验流程,包括源码及结果截屏
2021-11-24 12:23:37 198KB 串的操作与kmp模式匹配算法
1
电子地图截屏一把抓用软件,可以把有用的地图抓一下
2021-11-24 11:30:13 434KB 电子地图
1
能够批量处理灰度图,并进行截圆处理,且输出各个像素点的坐标信息
2021-11-24 11:20:45 873B 批量 灰度直方图 截圆
1
C# 做的滚动截屏(捕获整个网页)的源码
2021-11-21 11:14:39 194KB C#
1
C#仿QQ截屏源码 功能描述: 1、鼠标拖动选定捕获区域;   2、突出显示捕获区域;   3、调整捕获区域的大小;   4、键盘微调位置;   5、显示捕获区域的信息。   注:该程序模仿QQ的截屏功能,至于不太常用的编辑功能不包含其中。 技术特点: 1、GDI   2、双缓冲技术 注意事项:  截屏的核心功能位于CaptureScreenCore.dll文件中,使用时先将该文件添加进引用方可使用。   先创建Roovent.CaptureScreen.CaptureControl类的对象,调用该对象的Capture()方法便开始截图,该方法返回false时说明用户取消截图,返回true则截屏成功,通过CapturedPic属性返回的Bitmap对象来获得图像。具体代码见Demo。 (免
2021-11-21 10:40:58 116KB C# 仿QQ 截屏 源码
1
unity 截图分享ShareREC SDK
2021-11-21 09:30:35 4.01MB unity 截屏分享
1
弦截法,二分法,牛顿法c++程序,适用计算方法上机使用
2021-11-18 20:52:28 434B 弦截法,二分法,牛顿法
1
c语言弦截法求解方程c语言弦截法求解方程c语言弦截法求解方程c语言弦截法求解方程c语言弦截法求解方程c语言弦截法求解方程c语言弦截法求解方程c语言弦截法求解方程c语言弦截法求解方程
1
1. 目的: (1)通过采用牛顿迭代法、弦截法和二分法求根的程序设计,使学生更加系统地理解和掌握C语言函数间参数传递方法、数组和指针的应用等编程技巧。培养学生综合利用C语言进行科学计算,使学生将所学知识转化为分析和设计数学中的实际问题的能力,学会查资料和工具书。 (2)提高学生建立程序文档、归纳总结的能力。 (3)进一步巩固和灵活运用先修课程《计算机文化基础》有关文字处理、图表分析、数据归整、应用软件之间图表、数据共享等信息技术处理的综合能力。 2. 基本要求: (1)要求用模块化设计和C语言的思想来完成程序的设计; (2)要求分别编写牛顿迭代法、弦截法和二分法求根的函数,分别存到不同的.CPP文件中; (3)在VC++6.0环境中,学会调试程序的方法,及时查究错误,独立调试完成。 (4)程序调试通过后,完成程序文档的整理,加必要的注释。 一般解一元方程,常用采用的方法有:牛顿迭代法、弦截法和二分法等。 牛顿迭代法求根 〖〖f(x)=a〗_0 x〗^n 〖〖 + a〗_1 x〗^(n-1) +⋯+〖 a〗_(n-2) x^2 +〖 a〗_(n-1) x +〖 a〗_n=0 求f(x)在〖 x〗_0附近的根。 计算公式:〖 x〗_(n+1)=〖 x〗_n- f(〖 x〗_n )/(f(〖 x〗_n)) ́ 精度:ε=|〖 x〗_(n+1)-〖 x〗_n|<1.0e-m ,m=6。 牛顿迭代法 所求的根:满足精度的〖 x〗_n 二分法 任取两点〖 x〗_1和〖 x〗_2,判断(〖 x〗_1, 〖 x〗_2)有无实根。如下图所示,如果f(〖 x〗_1 )和f(〖 x〗_2 )符号相反,说明(〖 x〗_1, 〖 x〗_2)之间有一实根。取(〖 x〗_1, 〖 x〗_2)的中点x,检查f(x)和f(〖 x〗_1 )是否同符号,如果不同号,说明实根在(〖 x〗_1,x)区间,x作为新的〖 x〗_2,舍弃(x, 〖 x〗_2)区间;若同号,则实根在(x, 〖 x〗_2)区间,x作为新的〖 x〗_1, 舍弃(〖 x〗_1,x)区间。再根据新的〖 x〗_1 、 〖 x〗_2,找中点,重复上述步骤。直到|〖 x〗_1-〖 x〗_2|〖<10〗^(-6)时,x =(〖 x〗_1+〖 x〗_2)/2为所求。 (3)弦截法 取f(〖 x〗_1 )与f(〖 x〗_2 )连线与x轴的交点x,从(〖 x〗_1, x)和(x, 〖 x〗_2)两个区间中取舍的方法与二分法相同。 计算公式为: 判断f(〖 x〗_1 )与f(〖 x〗_2 )是否同符号的方法与二分法采用的方法相同。直到先后两次求出的x的值之差小于〖10〗^(-6)为止。 分别用牛顿迭代法、弦截法和二分法求下列方程的根,分析比较各种方法的迭代次数及精度。 〖f(x)=x〗^3 〖- 2x〗^2 +7x +4=0 牛顿迭代法的初值:x=0.5; 弦截法〖 x〗_1,〖 x〗_2的初值:-1,1 二分法〖 x〗_1,〖 x〗_2的初值:-1,0 精度要求:|〖 x〗_1-〖 x〗_2| 〖<10〗^(-6)
2021-11-18 20:47:16 35KB sa
1