基于深度神经网络的多尺度特征提取方法
2022-04-29 12:23:19 1024KB 研究论文
1
本文翻译自INFORMATION PROCESSING IN AGRICULTURE 4 (2017) 33–40,原标题为Computer vision-based apple grading for golden delicious apples based on surface features。 作者信息:Corresponding author. E-mail address: p_moallem@eng.ui.ac.ir (P. Moallem). 关键词Keywords: Golden delicious apple Grading Computer vision Segmentation Classification
1
bottom-up-attention预训练模型caffe版本,dropbox 搬运,用来进行图像特征提取, dynamic 10-100 model
1
HOG特征提取,以通过测试,希望对大家能够有所帮助。
2022-04-28 12:08:49 4KB HOG Matlab
1
Web技术是通过Web采用HTTP或HTTPS协议访问外部并对外部请求提供服务和响应的应用程序,Web应用日益成为软件开发的主流之一,随之而来的是,Web应用程序中存在的多种安全漏洞渐渐显露出来,这些给人们的生活、工作、学习都带来了巨大的损失。面对Web网站存在的种种安全漏洞问题,文章通过对大量SQL注入攻击报文的攻击特征进行总结分析,结合SQL注入攻击的攻击特征和攻击原理,提出了一种基于通用规则的SQL注入攻击检测与防御的方法,并利用SQL注入检测工具Sqlmap进行SQL注入攻击模拟同时对网络流量捕捉抓包,对上述检测防御方法进行验证。SQL注入检测工具利用自带网络爬虫通过HTTP协议和URL链接来遍历网页并获取页面数据信息,然后进行SQL注入尝试并通过抓包工具捕捉网络攻击流量,提取攻击特征,总结通用规则,更新规则库,最终结合IPS入侵防御系统告警或阻断来提升网络环境的安全性。实验测试表明,该方法可有效检测SQL注入攻击漏洞。
1
【图像识别】基于形态学实现指纹特征提取matlab源码
2022-04-27 09:22:27 7KB
1
基于LBP特征提取和GLCM特征提取的纹理图像分割仿真,matlab2021a仿真测试。
【摘要】 目标的自动识别是最有价值的应用需求之一,但它同时也最具挑战性。过去几十年中该课题的研究己经取得了较大的进展,但计算机自动识别技术还远没有达到理想的实际应用需求。自动识别技术涉及到很多方面的研究,如图像的预处理,图像增强、图像分割、特征提取方法和分类器的设计等等,这其中特征提取方法的研究尤为关键。一方面,研究者对特征提取的理论作了较多的探索,力求得出一些针对特定目标的高精度、高效率的特征提取算法与方法。这其中包含PCA方法、Fisher鉴别分析方法,以及以核方法为代表的非线性特征提取方法等。另一方面,在实际应用中算法的效率也是非常重要的。本文的研究集中在特征提取方法,这其中涉及到线性与非线性特征提取方法。 本文将特征提取方法分为线性和非线性特征提取方法。原始信息经过线性映射得到的变换后信息称为线性特征,原始信息经过非线性映射得到的变化后的信息成为非线性特征。对应的映射成为线性特征提取方法和非线性特征提取方法。 主分量分析和Fisher线性鉴别准则是应用最广泛的特征提取算法。本文论述了2DPCA和2DFLD等传统特征提取方法,并发展了2DFLD特征提取方法,提出分块的2DFLD特征提取方法,分析表明,该方法是2DFLD方法的推广,在人脸识别研究中优于传统的2DFLD方法。 核方法是新近发展起来的一种非线性特征提取方法,它的理论基础来自于统计学习理论。本文详细讨论了核特征提取方法,并结合偏最小二乘理论(PLS),提出了基于KPLS的特征融合方法。 本文以构造新的特征提取算法为主要的研究方向,并结合实际应用来验证算法的优劣,对于算法中部分参数的选择讨论不足,这将在以后的研究工作中予以关注。 还原 【Abstract】 ATR is one of the most significant requests, although it is also one of the most challenging tasks. During past several decades great progress has been made in research on this subject. However, it is far away from satisfactory requirements from real world. ATR involves many techniques, such as Image preprocessing; Image enhancing; Image Segmentation; Feature extraction; classifiers designing and so on. Feature extraction is crucial. On one hand, researchers attempt to work out algorithms and methods to some special targets with high right classification rate and good efficiency. Among them, Principal Component Analysis, Fisher’s Linear Discriminant, nonlinear algorithms mainly appearing as Kernel approaches, and so on. On the other hand, in real application efficiency is also an important indicator to assess one algorithm, because in many cases only algorithms with high efficiency can satisfy request of real task. This paper aims at designing feature extraction algorithms on face recognition, including linear feature extraction and nonlinear ones.Feature extraction approaches are divided into two groups in this paper, linear feature extraction and nonlinear feature extraction. The information after linear mapping is called linear features; the information after nonlinear mapping is called nonlinear features. The mappings are called linear feature extraction and nonlinear feature extraction correspondingly.Principal Component Analysis and Fisher’s Linear Discriminant are two methods widely used. This paper introduces feature extraction approaches, 2DPCA and 2DFLD, respectively. We develops the 2DFLD, and presents a new feature extraction approach called blocked FLD. 2DFLD is the special case of blocked FLD. the experimental results indicated that the recognition performance of blocked FLD is superior to that of 2DFLD.Kernel method is a powerful machine learning method developed recently. It builds on the statistical learning theory. Feature extraction based on kernel is discussed in detail. A feature fusion method combined with KPLS is proposed. 还原
1
基于sift特征提取的图片配准和拼接仿真,matlab2021a仿真.将2个不同视角的图片,通过shift特征进行拼接,得到一个完整的大图片。
2022-04-26 09:09:46 26.25MB 综合资源 文档资料 sift特征提取