mobilenetv3细分 的非官方实现,用于语义分割。 必需品 PyTorch 1.1 Python 3.x 用法 火车 单GPU训练 python train.py --model mobilenetv3_small --dataset citys --lr 0.0001 --epochs 240 多GPU训练 # for example, train mobilenetv3 with 4 GPUs: export NGPUS=4 python -m torch.distributed.launch --nproc_per_node=$NGPUS train.py --model mobilenetv3_small --dataset citys --lr 0.0001 --epochs 240 评估 单GPU训练 python eval.py --model mobilenetv
2021-05-12 19:26:15 33KB semantic-segmentation mobilenetv3 Python
1
惊人的语义分割 Tensorflow && Keras上的惊人语义分割(包括FCN,UNet,SegNet,PSPNet,PAN,RefineNet,DeepLabV3,DeepLabV3 +,DenseASPP,BiSegNet ...) 楷模 该项目支持以下语义分割模型: FCN-8s / 16s / 32s- UNet- SegNet- 贝叶斯SegNet- PSPNet- RefineNet- PAN- DeepLabV3- DeepLabV3Plus- DenseASPP- BiSegNet- 基本型号 该项目支持以下这些主干模型,您可以根据需要选择合适的基本模型。
1
中文分词 本项目为中文分词任务baseline的代码实现,模型包括 BiLSTM-CRF 基于BERT的+ X(softmax / CRF / BiLSTM + CRF) 罗伯塔+ X(softmax / CRF / BiLSTM + CRF) 本项目是的项目。 数据集 数据集第二届中文分词任务中的北京大学数据集。 模型 本项目实现了中文分词任务的baseline模型,对应路径分别为: BiLSTM-CRF BERT-Softmax BERT-CRF BERT-LSTM-CRF 其中,根据使用的预训练模型的不同,BERT-base-X模型可转换为Roberta-X模型。 要求 此仓库已在Python 3.6+和PyTorch 1.5.1上进行了测试。 主要要求是: tqdm scikit学习 火炬> = 1.5.1 :hugging_face: 变压器== 2.2.2 要解决环境问题,请运行:
1
论文《汉语表达的深度学习需要分词吗?》
2021-05-06 12:09:13 2.76MB nlp 自然语言处理
1
双重注意力网络:中科院自动化所提出新的自然场景图像分割框架(附源码)。本文提出了一个新的自然场景图像分割框架,以往的方法更为灵活、有效,在三个场景分割数据集Cityscapes、PASCAL Context 和 COCO Stuff上取得了当前最佳分割性能。
2021-05-03 18:44:14 21.02MB 场景分割 DANet
1
论文: Brain tumor segmentation using deep learning | Gal Peretz , Elad Amar
2021-05-01 19:55:15 485KB 论文
1
语音分割与语音聚类 speaker segmentation and clustering
2021-04-29 14:38:52 460KB 语音分割聚类
1
PyTorch中的语义分割 此仓库包含一个PyTorch,用于不同数据集的不同语义分割模型的实现。 要求 在运行脚本之前,需要先安装PyTorch和Torchvision,以及用于数据预处理的PIL和opencv和用于显示培训进度的tqdm 。 支持PyTorch v1.1(使用新的受支持的Tensoboard); 可以使用更早期的版本,但不要使用tensoboard,而要使用tensoboardX。 pip install -r requirements.txt 或本地安装 pip install --user -r requirements.txt 主要特点 清晰易用的结构, 一个j
1
著名的伯克利分割数据集。 注:(1)彩色图像数据集 (2)适用于传统的图像分割(OTSU法、最大熵法等) (3)公共免费的数据集
2021-04-24 14:08:06 21.08MB 彩色图像数据集 图像分割
1
医学图像分割代码 3DVNET
2021-04-19 18:02:00 78KB 机器学习 3DVNET
1