内容概要 集成了langchain、千问72b、chroma、m3e-large、LCEL等AI技术,通过爬取马斯克的公开信息,实现了虚拟马斯克对话机器人 适用人群 小白也能看懂的实现过程 能学到什么: 1.使用langchain 2.使用langchain调用本地llm模型、embedding模型、数据库 3.使用langchain的LCEL 4.Retrieval-Augmented Generation,简称RAG的实现方式 5.文档分割、拆分 6.高级prompt的实现方法 7.从搭建知识库到高级检索在到形成chain链最后输出的全流程 其他说明 易于集成:设计简洁的集成流程,轻松集成到现有系统中。 LangChain是一个用于开发由语言模型驱动的应用程序的框架。它使应用程序能够: 1.具有上下文感知能力:将语言模型与上下文源(提示说明、少量镜头示例、基于其响应的内容等)联系起来。 2.原因:依靠语言模型进行推理(关于如何根据提供的上下文回答,采取什么行动等)
2024-07-05 20:33:34 2KB python
1
在Python编程领域,串口通信(Serial Communication)是一种常见的硬件接口技术,用于设备间的低速数据传输。在工业控制、物联网应用以及实验数据采集等方面,串口通信扮演着重要角色。PYQT5是一个强大的Python图形用户界面库,它基于Qt框架,支持创建美观且功能丰富的桌面应用程序。本项目“python串口接收源码可以实时绘图”结合了这两个工具,旨在实现串口数据接收并实时可视化显示。 项目的核心是通过Python的`pyserial`库来处理串口通信。`pyserial`库提供了一系列API,使得开发者可以方便地打开、配置和读写串口。例如,你可以使用`Serial()`函数初始化一个串口对象,设置波特率、校验位、数据位和停止位等参数。然后,通过调用`read()`或`readline()`方法接收来自串口的数据。 在描述中提到,项目还包含了绘制曲线的功能。这可能使用了PYQT5中的`QGraphicsView`和`QGraphicsScene`组件,它们允许开发者创建复杂的2D图形。数据接收到后,可以利用`matplotlib`库进行数据处理和绘图。`matplotlib`提供了丰富的图表类型,包括折线图,可以用于绘制实时更新的曲线。数据点可以通过`plot()`函数添加到图表上,并使用`draw()`方法更新视图,以实现动态显示。 此外,项目还具备保存数据的功能,这可能是通过Python的文件操作实现的。可以使用内置的`open()`函数打开文件,选择合适的模式(如'w'代表写入,'a'代表追加),然后通过`write()`方法将接收到的数据写入文件。为了确保数据安全,通常会采用异常处理结构,如`try...except...finally`,确保即使在发生错误时也能正确关闭文件。 整体而言,这个项目展示了如何在Python环境下利用PYQT5构建一个串口数据接收程序,不仅可以实时显示数据,还能保存数据,这对于监控和分析串口设备输出的数据非常有用。通过学习和理解这个项目的源码,开发者可以掌握串口通信、GUI设计以及实时数据可视化的基本技能,这些在物联网和自动化领域有着广泛的应用。
2024-07-05 15:07:57 360KB python
1
气象研究必备pip库:netCDF4-1.5.8-cp37-cp37m-win-amd64
2024-07-05 11:05:14 2.87MB python
1
变更调查举证DB转方位线(箭头),可自定义长度
2024-07-04 18:01:52 37KB python脚本
1
深度学习溺水姿势检测素材是当前人工智能领域的一个重要应用,主要目标是通过计算机视觉技术来识别和预测水下的溺水情况。本数据集包含了532张从网络爬虫获取的水下拍摄的泳姿图片,这些图片可以作为训练深度学习模型的基础素材,帮助我们构建溺水检测系统。 深度学习是一种模仿人脑神经网络结构的机器学习方法,它能够通过大量的训练数据自我学习并改进模型,从而在图像识别、语音识别、自然语言处理等领域展现出强大的性能。在溺水检测中,深度学习模型可以通过对大量泳姿图片的学习,掌握不同泳姿和溺水状态的特征,提高识别的准确性和及时性。 Python是实现深度学习的主要编程语言,它拥有丰富的库和框架,如TensorFlow、Keras、PyTorch等,这些工具极大地简化了模型构建和训练的过程。对于这个溺水姿势检测任务,我们可以利用Python编写数据预处理脚本,将图像数据进行归一化、增强等处理,然后构建深度学习模型进行训练。 溺水检测系统通常基于卷积神经网络(CNN)架构,这种网络擅长处理图像数据。CNN包含卷积层、池化层、全连接层等组件,能够自动提取图像中的关键特征。在训练过程中,模型会逐步学习到溺水和非溺水状态的关键区别,例如人体姿态、水中的动作、面部表情等。在训练完成后,模型可以实时分析摄像头捕获的水下画面,快速判断是否存在溺水风险。 数据集中的每张图片都可能代表一个独特的游泳姿势或溺水状态,比如eb076ba52d156f8fb512fb6ca2fbc64142781e53.jpg、istockphoto-459392451-612x612.jpg等,这些图片在训练过程中会被拆分成输入图像和对应的标签(溺水或非溺水)。通过反向传播和梯度下降等优化算法,模型可以调整其参数以最小化预测错误,从而提高识别精度。 在实际应用中,这样的溺水检测系统可以部署在游泳池、海滩等水域的安全监控设备上,实时监测水面状况,一旦检测到异常情况,可以立即发出警报,减少溺水事故的发生。此外,该系统还可以结合物联网技术,与其他智能设备联动,实现远程预警和应急响应。 这个溺水姿势检测素材集合为开发高效、准确的深度学习溺水检测系统提供了宝贵的数据资源。通过深入研究和优化模型,我们可以构建出能够保障水上安全、挽救生命的人工智能解决方案。
2024-07-04 13:52:47 26.22MB 深度学习 python
1
【标题】: "Python在数学建模中的应用" 在数学建模中,Python语言因其强大的数据处理、科学计算以及可视化能力而备受青睐。本学习笔记主要涵盖了如何利用Python进行有效的数学建模,其中包括了老哥网课中的实例代码,旨在帮助你深入理解和实践数学建模的各个环节。 【描述】: "数学建模是将实际问题抽象为数学模型,并通过模型求解以解决现实问题的一种方法。这份资料集合了数学建模比赛中的题目,以及解决这些问题的一些思路和参考源码。这些源码不仅是对问题解决方案的呈现,也是学习和提升Python编程技巧的宝贵资源。" 在数学建模比赛中,你需要面对各种各样的问题,例如社会、经济、环境等领域的复杂现象。资料中的"思路"部分可能包括了对问题的分析、假设的建立、模型的选择、求解策略等步骤的详细阐述。而"源码参考"则是将这些理论知识转化为实际操作的关键,它涵盖了数据预处理、算法实现、结果验证等阶段,展示了Python在数学建模中的实际应用。 【标签】: "数学建模" 数学建模涉及到多个学科的知识,如微积分、概率统计、线性代数等。Python库如NumPy用于数值计算,Pandas用于数据管理,Matplotlib和Seaborn用于数据可视化,Scipy和SciKit-Learn提供了各种优化和机器学习算法,它们在数学建模中都发挥着重要作用。 在学习过程中,你将逐渐掌握如何利用Python来构建和求解数学模型,如线性规划、非线性优化、时间序列分析、预测模型等。同时,你还会学习到如何评估模型的合理性,以及如何根据实际情况调整模型参数,以提高模型的预测精度和实用性。 通过这份资料,你不仅可以提升数学建模的理论水平,还能增强实际操作技能,为参与数学建模竞赛或解决实际问题打下坚实基础。无论你是初学者还是有一定经验的建模者,都能从中受益。 【压缩包子文件的文件名称列表】: "new22" 这个文件名可能表示这是一个未命名或正在更新的文件夹,通常在学习资料的整理过程中,会随着内容的不断补充和完善而更新。在这个文件夹中,你可能会找到不同阶段的学习笔记、代码示例、模型解析等各类文档,它们将构成一个完整的数学建模学习路径,帮助你在实践中不断进步。 总结来说,这份"Python在数学建模中的应用"学习资料是一份宝贵的资源,它结合了理论与实践,将带你走进数学建模的世界,体验从问题提出到解决方案的全过程,提升你的数学思维和编程能力。无论是为了比赛准备还是学术研究,都是不可多得的学习材料。
2024-07-04 11:26:58 49.54MB 数学建模
1
Python Streamlit 360全景照片 Web端应用 采用Penellum JS 全景照片库, 可嵌入腾讯云或阿里云对象存储图片 采用Streamlit库作为web前端
2024-07-04 10:44:57 2KB python streamlit
1
《Python核心编程(第3版)》是经典畅销图书《Python核心编程(第二版)》的全新升级版本。 《Python核心编程(第3版)》总共分为3部分。第1部分为讲解了Python的一些通用应用,包括正则表达式、网络编程、Internet客户端编程、多线程编程、GUI编程、数据库编程、Microsoft Office编程、扩展Python等内容。
2024-07-04 09:09:17 17.06MB Python 核心编程 pdf
1
【作品名称】:基于 python 实现的自动售货机商品检测检索 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:对于自动售货机摄像头拍摄的静态数据,进行商品的检测,并按照图像检索的方式确定商品类别 阶段一 检测: Faster RCNN : resnext101_32x8d + ROIAlign objectness二分类,CIOU Loss 检索: CE Loss 预训练 Triplet Loss, ArcFace 微调 KNN, k=10, cosine distance 商品库图像数量平衡,提取特征平衡两种方案,防止KNN聚类的对于少量样本(商品库样本数量最少为2)的类别无法有效聚类。
2024-07-03 14:18:11 7.01MB python 商品检测 自动售卖机
在视觉检测领域,Python结合OpenCV库以及ROS(Robot Operating System)系统,是实现无人小车自主导航的重要技术栈。本文将深入探讨如何利用这些工具进行障碍物检测,以确保小车安全、有效地行驶。 OpenCV是计算机视觉领域的强大库,它提供了丰富的图像处理和模式识别功能。在Python中,我们可以利用OpenCV读取摄像头输入的视频流,对每一帧图像进行处理。例如,可以使用`cv2.VideoCapture()`函数打开摄像头,并用`read()`方法获取每一帧图像。为了检测障碍物,通常会涉及到图像预处理,如灰度化、直方图均衡化、滤波等步骤,以提升后续特征提取的效果。 接下来,是特征检测和识别阶段。OpenCV提供多种算法,如边缘检测(Canny、Sobel)、轮廓检测、霍夫变换等,用于寻找可能代表障碍物的特征。例如,可以使用Canny边缘检测算法找到图像中的边缘,然后根据边缘的分布和形状判断是否存在障碍物。此外,还可以使用模板匹配或特征匹配(如SIFT、SURF)来识别特定的障碍物。 ROS是机器人软件开发的开源框架,它为不同模块间的通信提供了一套标准接口。在无人小车项目中,我们可以通过ROS节点发布和订阅消息,实现视觉检测与小车控制的交互。例如,创建一个ROS节点用于处理OpenCV的图像数据,然后将检测到的障碍物信息通过`geometry_msgs/PoseStamped`或`sensor_msgs/PointCloud2`等消息类型发布出去。其他节点,如路径规划和避障算法,可以订阅这些消息,据此做出决策。 为了在ROS环境中运行Python脚本,我们需要使用`rospy`库,它提供了ROS与Python的接口。`rospy.init_node()`初始化ROS节点,`rospy.Subscriber()`订阅消息,`rospy.Publisher()`发布消息。同时,我们还需要将OpenCV的图像数据转换为ROS的消息格式,例如,使用`cv_bridge`库进行图像数据的转换。 在实际应用中,我们可能还会涉及到实时性优化,例如,通过多线程或异步处理提高处理速度,确保小车能快速响应环境变化。同时,为了适应不同的光照条件和环境背景,可能需要训练更复杂的模型,如深度学习的卷积神经网络(CNN),来提升障碍物检测的准确性和鲁棒性。 通过Python的OpenCV库进行视觉处理,结合ROS系统实现信息的发布和订阅,我们可以构建出一套有效的无人小车障碍物检测系统。这个系统不仅可以检测静态障碍,还能识别动态物体,为无人小车的自主导航提供关键信息。在实践中,我们需要不断优化算法和参数,以适应实际场景的需求,确保小车安全、高效地运行。
2024-07-03 12:39:44 6KB opencv 视觉检测 python
1