基于SVM的疲劳驾驶系统。基于神经网络的非接触式疲劳驾驶检测已成为当前针对疲劳驾驶检测领域炙手可热的研究方向。它有效解决了接触式疲劳检测方法给驾驶员带来的干扰以及单一信号源对于反映疲劳程度可靠性低的问题,同时通过设计神经网络模型对多源信息进行分类,实现对疲劳状态的高精度和高速度的检测。选取合适的特征值对网络检测准确率以及准确反映疲劳程度至关重要。基于驾驶员生理信号检测可靠性和准确性较高。
2022-05-01 17:08:06 87KB SVM SVM分类 驾驶员 疲劳
四个机器学习实验,主要涉及简单的线性回归、朴素贝叶斯分类器、支持向量机、CNN做文本分类,内附实验指导书、讲解PPT、参考代码 1、实验讲解PPT 4份 实验一 线性回归模型实验指导 实验二 支持向量机模型实验指导 实验三 贝叶斯分类解决西瓜问题 实验四 基于tensorflow实现CNN文本分类 2、实验指导书 4份 实验一 线性回归实验指导书 实验二 支持向量机实验指导书 实验三 贝叶斯分类实验指导书 实验四 基于tensorflow实现cnn文本处理实验指导书 3、实验参考代码 4份 实验一 LinearRegression 实验二 SVM 实验三 bayes_classify_demo 实验四 cnn-text-classification-tf
2022-05-01 12:05:44 4.63MB 机器学习 线性回归 支持向量机 cnn
利用AdaBoost训练分类器的过程比较繁琐,这篇文章总结了全部过程,很详细,看完就会
2022-05-01 11:06:15 113KB AdaBoost
1
C#2008编写的基于K-近邻法(KNN)的水质分类器,初学C#,遇上模式识别课程设计,试着编了一下,利用最基本的公式,代码有些粗糙,但很简单易懂。
2022-04-30 14:38:35 53KB C# 2008 K-近邻法 KNN
1
机器学习+贝叶斯分类器+北邮自动化作业+实验+yhh大家都懂的,作业巨多的那个老师,创作不易
告别繁琐步骤,用Python脚本一键训练自己的目标检测数据集 i Only need to Click Once
2022-04-29 18:10:09 43.72MB opencv 目标检测 计算机视觉 机器学习
1
面向语义的文本分类是指在给定的分类体系下,根据文本的内容自动识别文本类别的过程。是一种基于朴素贝叶斯算法的分类技术应用与中文短文本分类。
2022-04-29 14:58:40 714KB 短文本 分类 朴素贝叶斯
1
Binary_Classifier 在Tensorflow (1.4)数据集( )上使用Tensorflow (1.4) Keras 2.1.5和Tensorflow (1.4)后端在ResNet-50上构建的简单Cat-Dog分类器。 先决条件 确保从此提取的数据集在项目文件夹中。 Python 3+ 安装Tensorflow: $ pip install tensorflow 安装Keras(2.1.5+): $ pip install keras 安装h5py: $ pip install h5py 安装PIL(枕头): $ pip install Pillow 可以在找到适用于MacOS和Ubuntu安装这些库的详细指南。 测验 要测试单个图像以进行预测,请打开终端并运行(建议使用Ubuntu/macOS ): $ python predict.py 默
2022-04-28 17:13:42 83.87MB Python
1
变压器是电网的核心设备,其健康状态关系到电力系统的安全运行,开展变压器故障诊断既有实用价值,又有研究意义。变压器故障诊断的传统方法为国际电工委员会发布的IEC三比值法,该方法存在诊断准确率低、对编码以外的部分样本无法诊断等弊端。鉴于此,本文提出了一种基于统计规律的故障诊断方法,利用变压器油中溶解气体作为特征量,以故障类型为分类结果,采用朴素贝叶斯算法,建立了基于贝叶斯分类器的变压器故障诊断模型。为验证本文模型的效果,采取了两次实例测试:单次随机试验表明,本文模型将诊断准确率较IEC传统方法提高了10个百分点;多次随机试验表明,本文模型的平均诊断准确率在95%以上。因此,本文模型具有分类准确率高、泛化能力强等特点,能满足实际工程需要,可作为电力设备故障诊断的有效方法。
2022-04-27 14:46:02 895KB 贝叶斯; 电力; 变压器; 故障诊断
1
lda(线性分类器)的网络学习资料,及matlab代码
2022-04-27 13:47:24 16.58MB lda
1