采用daubechies函数进行地震波的小波分解
针对传统CIC抽取滤波器处理宽带信号时,阻带衰减满足要求,通带衰减过大的问题,提出了一种改进CIC抽取器的设计方法;在分级抽取滤波器的基础上用锐化技术改善滤波器通阻带衰减,采用内插二阶多项补偿函数对通带进行额外补偿,使带内更平坦,并利用多相分解的方法降低了抽取滤波器采样率;仿真验证了改进型滤波器具有更好的通、阻带特性。最后在FPGA上实现这个改进型CIC滤波器的设计,并进行了时序仿真和综合验证。
1
matlab开发-按时间域分解TDD的ModeShapesTraction。线性结构的模态参数只能用位移记录进行时域估计。
2022-09-11 20:33:34 3.97MB 未分类
1
用C++代码编写高等数学中的矩阵QR分解
2022-09-09 14:22:25 2KB 矩阵QR分解 C++
1
已经提出了几种基于波段的总变化(TV)正规化低秩(LR)的模型,以消除高光谱图像(HSI)中的混合噪声。 这些方法基于LR矩阵分解将高维HSI数据转换为2D数据。 该策略引入了有用的多路结构信息的丢失。 而且,这些基于波段的基于电视的方法以单独的方式利用空间信息。 为了解决这些问题,我们提出了一种空间频谱电视正则化LR张量分解(SSTV-LRTF)方法,以消除HSI中的混合噪声。 一方面,假定高光谱数据位于LR张量中,该张量可以利用高光谱数据的固有张量结构。 基于LRTF的方法可以有效地将LR干净图像与稀疏噪声区分开。 从另一方面,假设HSI在空间域中是分段平滑的。 TV正则化在保留空间分段平滑度和消除高斯噪声方面有效。 这些事实激发了LRTF与电视正则化的集成。 为了解决带状电视的局限性,我们使用SSTV正则化同时考虑本地空间结构和相邻频带的频谱相关性。 模拟和真实数据实验均表明,与最新的电视规则化和基于LR的方法相比,所提出的SSTV-LRTF方法在HSI混合噪声去除方面具有出色的性能。
2022-09-08 08:46:38 4MB 研究论文
1
数值优化:最小相位谱分析, 适合信号图像处理,机器学习的初学者分析学习。 在控制理论和信号处理中,如果系统及其逆是因果且稳定的,则称线性时不变系统是最小相位的。 最一般的因果 LTI传递函数可以唯一地分解为一系列全通和最小相位系统。系统函数是两部分的乘积,在时域中,系统的响应是两部分响应的卷积。最小相位和一般传递函数之间的区别在于,最小相位系统的传递函数的所有极点和零点都位于 s 平面表示的左半部分(在离散时间内,分别在z 平面)。由于反转系统函数会导致极点变为零,反之亦然,并且右侧的极点(s平面 虚线)或复平面外(z平面 单位圆)导致系统不稳定,反演下只有最小相位系统类是闭合的。直观地说,一般因果系统的最小相位部分以最小的群延迟实现其幅度响应,而其全通部分仅校正其相位响应以与原始系统函数相对应。 极点和零点的分析仅在传递函数的情况下是准确的,传递函数可以表示为多项式的比率。在连续时间的情况下,这样的系统转化为传统的、理想化的LCR 网络的网络。在离散时间中,它们可以方便地转化为近似值,使用加法、乘法和单位延迟。可以证明,在这两种情况下,具有递增阶的有理形式的系统函数
1
1 非负矩阵分解(NMF或NNMF),也是非负矩阵逼近是多元分析和线性代数中的一组算法,其中矩阵V被分解为(通常)两个矩阵W和H ,具有所有三个矩阵都没有负元素的性质。这种非负性使生成的矩阵更容易检查。此外,在处理音频频谱图或肌肉活动等应用中,非负性是所考虑的数据所固有的。由于该问题通常不能完全解决,因此通常用数值近似。 2 适合机器学习,数值优化,图像处理,信号处理等专业的初学者进行分析和学习。 3 语音去噪一直是音频信号处理中长期存在的问题。如果噪声是静止的,则有许多去噪算法。例如,维纳滤波器适用于加性高斯噪声。然而,如果噪声是非平稳的,经典的去噪算法通常性能较差,因为非平稳噪声的统计信息难以估计。施密特等人。使用NMF在非平稳噪声下进行语音去噪,这与经典的统计方法完全不同。关键思想是干净的语音信号可以用语音字典稀疏地表示,但非平稳噪声不能。类似地,非平稳噪声也可以用噪声字典稀疏表示,但语音不能。NMF去噪算法如下。两个字典,一个用于语音,一个用于噪声,需要离线训练。
2022-09-07 15:06:06 31.61MB 机器学习 信号处理 图像处理 数值优化
1
天线阵列(或阵列天线)是一组连接的多个天线,它们作为单个天线一起工作,以发射或接收无线电波。单个天线(称为元件)通常通过馈线连接到单个接收器或发射器,馈线以特定相位关系将功率馈送到元件。每个单独天线辐射的无线电波组合和叠加,加在一起(建设性干扰)以增强在所需方向上辐射的功率,并抵消(破坏性干扰)以减少在其他方向上辐射的功率。类似地,当用于接收时,来自各个天线的单独射频电流在接收器中以正确的相位关系组合以增强从期望方向接收的信号并消除来自不期望方向的信号。更复杂的阵列天线可能具有多个发射器或接收器模块,每个模块都连接到一个单独的天线元件或一组元件。 与单个元件相比,天线阵列可以实现更高的增益(方向性),即更窄的无线电波波束。一般来说,使用的单个天线元件的数量越多,增益越高,波束越窄。一些天线阵列(如军用相控阵雷达)由数千个单独的天线组成。阵列可用于实现更高的增益、提供路径分集(也称为MIMO),从而提高通信可靠性、消除来自特定方向的 干扰、以电子方式引导无线电波束指向不同的方向,以及无线电测向(RDF)。
2022-09-07 15:06:00 31.62MB 数值优化 机器学习 深度学习 信号处理
1
c++实现质因数分解,主要是快速,因为分解用普通方法也可以,如何快速分解呢,答案是用筛选法先求出质数,然后分解质数就很快了
1
EMD信号分解功能函数 用于机械振动信号分解
2022-09-02 18:05:37 68KB EMD
1