MindSpore 框架下基于ResNet50迁移学习的方法实现花卉数据集图像分类(5类)
2024-07-28 17:00:53 613.56MB 迁移学习 数据集 python
1
Learn and implement quantitative finance using popular Python libraries like NumPy, pandas, and Keras Key Features Understand Python data structure fundamentals and work with time series data Use popular Python libraries including TensorFlow, Keras, and SciPy to deploy key concepts in quantitative finance Explore various Python programs and learn finance paradigms Book Description Python is one of the most popular languages used for quantitative finance. With this book, you'll explore the key characteristics of Python for finance, solve problems in finance, and understand risk management. The book starts with major concepts and techniques related to quantitative finance, and an introduction to some key Python libraries. Next, you'll implement time series analysis using pandas and DataFrames. The following chapters will help you gain an understanding of how to measure the diversifiable and non-diversifiable security risk of a portfolio and optimize your portfolio by implementing Markowitz Portfolio Optimization. Sections on regression analysis methodology will help you to value assets and understand the relationship between commodity prices and business stocks. In addition to this, you'll be able to forecast stock prices using Monte Carlo simulation. The book will also highlight forecast models that will show you how to determine the price of a call option by analyzing price variation. You'll also use deep learning for financial data analysis and forecasting. In the concluding chapters, you will create neural networks with TensorFlow and Keras for forecasting and prediction. By the end of this book, you will be equipped with the skills you need to perform different financial analysis tasks using Python
2024-07-28 12:22:48 12.44MB Python Finance TensorFlow Keras
1
模块由idlelib tree模块修改,完善一些问题,重写了获取类和函数的方法,便于获取正在编辑代码的类和函数。重写了文件浏览模块,支持添加收藏,树状文件浏览器双击py(pyw)文件会打开函数浏览器,文件浏览器支持很多文件的图标,需要的图标也已经一起打包了,需要别的图标的去我另一个资源下载。代码基本都有注释,方便新手学习,注释不一定完全正确
2024-07-27 20:41:15 66KB python 类和函数
1
Python打包独立的mitmproxy.exe,可在任意机器直接运行
2024-07-26 13:16:38 23.25MB python
1
数据科学 项目1:足球运动员的评分( ) 使用来自欧洲足球数据库的数据并建立了回归模型,以基于各种属性预测足球运动员的整体评分。 使用Flask构建了基本的API,并将其部署到GCP,Herolu和Pivotal云平台中。 项目2:预测一个人每年的收入是否超过5万( ) 建立了几个分类模型,以预测一个人每年从经典成人数据集中赚取的收入是否超过5万。 建立了KNN,决策树,随机森林和XGBoost模型,并通过比较各自的AUC和准确性得分,比较了哪一种最适合数据集。 项目3:Zomato_EDA( ) 是否在Zomato印度餐厅数据集上进行了广泛的EDA分析。 zomato探索性数据分析旨在为美食家找到最佳的餐馆,并在他们所在的地区物有所值。 它还有助于在当地找到所需的美食。
2024-07-26 12:10:55 7.86MB python flask jupyter-notebook JupyterNotebook
1
VOC目前处于中断状态 BeeWare项目已不再使用VOC进行Android开发。 现在,我们使用来提供Android支持。 我们仍然相信字节码编译方法具有价值。 但是,我们不将任何BeeWare资源用于VOC开发,并且我们目前不鼓励其他人为VOC做出贡献。 如果您仍然对使用VOC感兴趣,请。 挥发性有机物 一个将Python代码转换为Java字节码的编译器。 这是实验代码。 如果破裂,您将保留所有闪亮的碎片。 它能做什么: 提供一个API,可让您以编程方式创建Java类文件。 将Python 3.4源文件编译为Java类文件,使您能够在JVM(包括Android的VM)上运行Python代码。 它不是完全兼容的Python 3.4实现-仍然需要实现一些语言功能(一些内置函数),并且只有一个基本的标准库实现。 但是,可以转换简单的Python程序,甚至编写简单的Androi
2024-07-25 15:34:17 4.85MB Python
1
《Python数据科学手册》是Jake VanderPlas撰写的一本针对数据科学和机器学习工具的权威指南,特别适合已经熟悉Python编程的科学家和数据分析师。这本书的2023年版全面更新,旨在帮助读者掌握使用Python进行数据分析的核心工具。 1. **IPython与Jupyter**: IPython是一个交互式计算环境,而Jupyter Notebook是基于Web的界面,让科学家能够以交互方式编写和展示代码、数据和可视化结果。这两个工具结合,为数据科学家提供了强大且灵活的工作平台,支持多语言,便于合作和文档记录。 2. **NumPy**: NumPy是Python的一个核心库,提供了多维数据结构`ndarray`,用于高效存储和处理大型数组数据。NumPy还包含数学函数库,支持向量和矩阵运算,是进行数值计算的基础。 3. **Pandas**: Pandas是构建在NumPy之上的数据处理库,其DataFrame对象提供了一种高效的方式来组织和操作结构化或标签数据。DataFrame允许用户轻松地清洗、转换和合并数据,非常适合进行数据预处理工作。 4. **Matplotlib**: Matplotlib是Python最常用的绘图库,支持创建各种静态、动态和交互式的可视化。它提供了一套类似于MATLAB的API,可以绘制2D和3D图形,并支持自定义颜色、样式、标签等元素,满足复杂的数据可视化需求。 5. **Scikit-Learn**: Scikit-Learn是Python中广泛使用的机器学习库,提供了大量预包装的算法,包括监督学习(如分类、回归和聚类)和无监督学习方法。Scikit-Learn的API设计简洁,使得构建和评估机器学习模型变得简单。 6. **其他相关工具**: 除了上述工具,书中可能还会涵盖其他辅助工具,如用于数据处理的Pandas扩展库(如Dask、Pyspark),用于统计分析的Statsmodels,以及用于深度学习的TensorFlow和Keras等。 通过本书,读者将能够: - 学习如何利用IPython和Jupyter Notebook进行高效的数据探索和分析。 - 掌握NumPy和Pandas进行数据存储、清洗、转换和操纵的技巧。 - 使用Matplotlib创建各种图表,以视觉方式表达数据。 - 了解并应用Scikit-Learn构建机器学习模型,包括训练、验证和优化模型。 - 探索和整合其他相关工具,以扩展Python数据科学工具箱。 Jake VanderPlas,作为本书的作者,拥有丰富的经验,他在Google Research担任软件工程师,专注于开发支持数据密集型研究的工具,包括Scikit-Learn在内的Python库,确保了书中的内容既实用又前沿。这本书是Python数据科学家必备的参考资源,无论你是初学者还是经验丰富的专业人士,都能从中受益。
2024-07-24 11:37:14 19.7MB python
1
python data science handbook-english version python data science handbook-english version
2024-07-24 11:30:15 20.47MB python
1
Python是数据科学和机器学习领域广泛使用的编程语言,其丰富的库为数据分析提供了强大的支持。在Python中,matplotlib、pandas和numpy是三个非常关键的库,它们分别用于数据可视化、数据处理和数值计算。 matplotlib是Python中最常用的绘图库,它能够创建各种高质量的图表,如折线图、散点图、条形图等。在提供的代码示例中,展示了如何绘制折线图。`plt.plot()`函数用于绘制折线,通过调整`linestyle`参数可以改变线条的样式,如直线、虚线、点划线等。`plt.xticks()`和`plt.yticks()`用于设置坐标轴的刻度标签,而`plt.xlabel()`和`plt.ylabel()`则用来定义坐标轴的名称。`plt.legend()`用于添加图例,`plt.title()`设定图表的标题,`plt.grid()`则用于添加网格线。此外,`plt.savefig()`用于将图表保存到本地。 pandas是一个强大的数据处理库,它提供了DataFrame和Series两种主要的数据结构,用于存储和操作结构化数据。虽然在给出的代码中没有直接使用pandas,但在实际数据分析中,通常会用pandas来清洗、预处理数据,然后用matplotlib进行可视化。 numpy则是Python中的数值计算库,提供了高效的多维数组对象ndarray,以及大量的数学函数来处理这些数组。在进行机器学习模型训练或科学计算时,numpy数组可以极大地提高性能。虽然这段代码也没有直接使用numpy,但在数据分析中,例如数据预处理、特征工程等步骤,numpy的作用不可或缺,比如使用numpy的函数`np.random.randint()`生成随机整数序列。 matplotlib、pandas和numpy是Python中进行数据处理和可视化的三大支柱。matplotlib提供图表绘制功能,使数据结果直观呈现;pandas用于高效地组织和处理数据,方便数据清洗和分析;numpy则专注于数值计算,为复杂的数据运算提供高性能支持。掌握这三个库的基本操作,对于Python在数据分析和机器学习领域的应用至关重要。
2024-07-24 10:30:42 533KB numpy python matplotlib pandas
1
Matplotlib绘图
2024-07-24 10:10:24 4.48MB matplotlib python
1