信号调制方式的识别在通信系统分析中是一个极其重要的技术环节。随着通信技术的迅速进步,调制方式的种类越来越多,如何高效准确地识别和监视无线电通信信号已成为军事和民用领域亟待解决的技术难题。传统上,信号调制方式的识别主要依赖于工程师的专业经验和各类信号分析工具。 本文介绍了一种新的信号调制方式混合识别算法,该算法由冯晓东和龚鑫提出,目的是为了识别当前通信系统中使用的主要调制方式。该算法创新性地结合了瞬时特征参量和高阶累积量的特点,并通过决策树分类器来实现信号调制方式的分类识别。这种基于决策树的混合识别方法,在识别通信信号调制方式上表现出了良好的性能。 算法利用信号的谱对称性将待识别的信号分为两大类。这个步骤是基于信号功率谱的对称性来实现的,该对称性可以反映出不同的调制方式所具备的特征。随后,算法从四阶累积量中提取两个特征参数,并结合归一化中心瞬时频率的标准差以及归一化中心瞬时幅度的方差来进行类内识别。这些特征参数的数量少,但可以有效地将复杂的信号特征进行抽象和简化。 最终,决策树分类器被用来完成整个信号调制方式的识别过程。决策树是一种有监督学习方法,它通过构建决策树来对样本进行分类。在每一步中,算法选择最佳的特征来分割数据集,直至达到预定的停止条件,例如,当决策树达到了最大深度,或者所有的数据都被正确分类。 本文提到的算法具有较高的稳健性,即在通信信号质量不佳,比如信噪比较低的情况下,依然能够有效地识别出调制方式。MATLAB仿真结果验证了这一点,该算法能够在信噪比不低于6dB的情况下,实现对十种信号调制方式(AM、LSB、USB、2FSK、4FSK、BPSK、QPSK、OQPSK、16QAM、32QAM)的准确识别,并且准确率在95%以上。这说明即使在较低信噪比的条件下,该算法也能够有效地识别复杂的调制方式。 在信号调制识别领域,高阶累积量方法具有抑制高斯白噪声的能力,这使得它成为研究复杂调制识别的一个热点。高阶累积量可以更有效地表征信号的统计特性,从而为复杂信号的识别提供更加准确的依据。与之相比,基于瞬时信息的调制识别方法虽然计算量小,便于工程实现,但对复杂调制信号如MPSK、MQAM的自动识别仍然是一个难点。 关键词“瞬时特征值”指的是信号在特定瞬时的特征参数,这些参数在信号处理和识别过程中是分析信号状态的重要指标。瞬时特征值能够反映出信号在某一时刻的状态,对于信号调制方式的识别尤其重要。而“调制识别”则是指通过分析信号的特定特征来确定信号采用的调制方法,这是无线通信信号分析的一个核心任务。高阶累积量通常用于描述信号的非高斯性,在调制识别中能够提供比传统统计方法更强的区分能力,尤其是对抗高斯噪声的能力较强。 本文提出的混合识别算法结合了多种信号处理技术的优点,为信号调制方式识别提供了新的研究方向和方法。该算法不仅提高了识别的准确性,还减少了运算量,有望在未来的通信信号分析中得到广泛应用。
2025-04-19 12:57:45 262KB 瞬时特征值
1
包含3440张cfcf穿越火线角色图片,已标注为YOLO txt格式,已划分为训练集、验证集和测试集,拿到手即可直接开始训练。可用于YOLO目标检测模型训练,机器学习,深度学习,人工智能,python,pycharm。
2025-04-19 07:44:10 191.83MB 数据集 YOLO Python 目标检测
1
在本项目中,我们探索了两个著名的机器学习数据集——ImageNet和MNIST,并利用TensorFlow框架以及Django Web框架来构建一个在线的手写体识别系统。ImageNet是大规模视觉识别研究的重要里程碑,包含上百万张标注图像,涵盖数千个类别。而MNIST则是一个相对较小但经典的数据库,主要用于训练和测试手写数字识别模型。 让我们深入了解一下TensorFlow。TensorFlow是由Google开发的一款开源的深度学习库,它允许用户构建和部署各种计算图,用于执行高效的数值计算。TensorFlow的核心概念是“张量”,它代表多维数组,可以是标量、向量、矩阵甚至是更高维度的数据结构。通过定义计算图,我们可以描述数据流如何从输入到输出进行变换,这使得模型的训练和预测过程变得直观且易于优化。 在处理ImageNet数据集时,通常会使用预训练的模型,如AlexNet、VGG或ResNet等。这些模型已经在ImageNet上进行了大量训练,具备识别多种复杂对象的能力。我们可以通过迁移学习,将这些预训练模型的部分层固定,只训练最后一层或几层,以适应新的任务需求。这样可以大大减少训练时间并提高新模型的性能。 接下来,我们转向MNIST手写体识别任务。MNIST数据集包含60,000个训练样本和10,000个测试样本,每个样本都是28x28像素的灰度图像,表示0-9的数字。对于这样的问题,我们可以构建一个卷积神经网络(CNN)模型,该模型由卷积层、池化层、全连接层和softmax分类层组成。CNN擅长捕捉图像中的空间特征,非常适合图像识别任务。经过训练后,模型应该能对手写数字进行准确的分类。 为了将这些模型部署到Web应用中,我们选择了Django框架。Django是一个基于Python的高级Web框架,它提供了强大的功能,包括URL路由、模板系统和数据库管理。在这个项目中,我们需要创建一个视图函数,接收用户上传的图片,然后用TensorFlow模型进行预测,并将结果返回给前端展示。此外,我们还需要设置相应的模板和URL配置,以便用户可以轻松地与应用交互。 在实际开发过程中,我们需要考虑以下几点: 1. 数据预处理:对MNIST和ImageNet数据进行适当的预处理,如归一化、批处理和数据增强,以提升模型的泛化能力。 2. 模型优化:调整模型的超参数,如学习率、批次大小、正则化等,以找到最佳性能的模型。 3. 资源管理:考虑到服务器性能,可能需要将模型部署到GPU上以加速计算,同时注意内存管理和计算效率。 4. 安全性:在Django应用中,要确保用户上传的图片安全,防止恶意代码注入。 5. 用户界面:设计友好的用户界面,让用户能够方便地上传图片并查看预测结果。 这个项目涵盖了深度学习、计算机视觉、Web开发等多个领域,通过实践可以提升对这些技术的理解和应用能力。通过TensorFlow和Django的结合,我们可以搭建出一个实时的、用户友好的手写数字识别服务,这也是AI技术在实际生活中的一个精彩应用。
2025-04-18 23:38:23 81.61MB 人工智能 深度学习 tensorflow
1
在Android平台上,开发一款应用实现人脸识别、圆形相机预览框、自定义截取图片尺寸以及圆形图片显示,涉及到了多个核心技术和组件。以下是对这些关键知识点的详细解释: 1. **Android人脸识别(Face Detection)**: Android SDK提供了一个名为`FaceDetector`的类,用于在图像中检测人脸。它可以从Bitmap或Surface中读取数据,然后通过分析像素来识别出可能的人脸区域。`FaceDetector`会返回包含人脸位置、大小和特征(如眼睛、鼻子和嘴巴)的信息。此外,Android 8.0(API级别26)引入了更强大的`CameraX`库,其`ImageAnalysis`组件可以配合现代的机器学习模型进行实时人脸识别。 2. **圆形相机预览框(Circular Camera Preview)**: 在Android中,我们通常使用`Camera`或`Camera2` API来访问摄像头。为了实现圆形预览框,需要对预览纹理进行裁剪和变形处理。这通常涉及到自定义`TextureView`或`SurfaceView`,在`onDraw()`方法中绘制一个圆形区域。另外,`Matrix`类可用于调整图像的透视和缩放,以适应圆形边界。 3. **自定义截取图片尺寸(Custom Image Cropping)**: 截取图片时,我们可以使用`Bitmap.createBitmap()`方法,传入想要的宽度和高度来创建一个新的Bitmap对象。然后,通过`Canvas`将原始图像的一部分绘制到这个新的Bitmap上,实现裁剪。此外,`CropIntent`可以提供一种用户友好的裁剪界面,但它的裁剪比例固定,不能完全满足自定义尺寸的需求。 4. **圆形图片显示(Circular Image Display)**: 显示圆形图片,最简单的方法是使用`android.graphics.drawable.RoundRectShape`和`GradientDrawable`。创建一个圆形的`ShapeDrawable`,然后将其设置为ImageView的背景。或者,可以使用`ImageView`的`android:scaleType="centerCrop"`属性并结合`ClipDrawable`,让图片中心填充圆形区域。对于Bitmap,可以先将其转换为圆角Bitmap,再设置给ImageView。 5. **使用现代机器学习库**: 如今,Android开发者可以利用如TensorFlow Lite这样的轻量级机器学习框架,在设备上执行高效的人脸识别任务。这允许我们利用复杂的神经网络模型,提供更高精度的面部检测和识别功能,而不仅仅是简单的边界框检测。 6. **权限管理**: 实现上述功能需要申请相应的权限,比如`Manifest.permission.CAMERA`用于访问相机,`Manifest.permission.WRITE_EXTERNAL_STORAGE`或`Manifest.permission.READ_EXTERNAL_STORAGE`用于读写图片。 7. **UI设计与交互**: 设计用户界面时,要考虑到用户体验和反馈。例如,提供清晰的拍照按钮,显示人脸检测结果,以及裁剪过程中的实时预览等。 8. **性能优化**: 人脸识别和图片处理可能会消耗大量CPU和内存,因此需要考虑性能优化,如使用异步操作、合理的缓存策略,以及避免不必要的资源浪费。 通过以上技术的综合运用,可以构建一个高效且功能丰富的Android应用,实现人脸识别、定制相机预览、图片裁剪和圆形图片显示。在实际开发过程中,还需要关注兼容性问题,确保应用能在不同Android版本和设备上良好运行。
2025-04-18 18:02:52 8.04MB android 人脸识别 Face
1
模式识别就是通过计算机用数学技术方法来研究模式的自动处理和判读,把环境与客体统称为“模式”。随着计算机技术的发展,人类有可能研究复杂的信息处理过程,其过程的一个重要形式是生命体对环境及客体的识别。模式识别以图像处理与计算机视觉、语音语言信息处理、脑网络组、类脑智能等为主要研究方向,研究人类模式识别的机理以及有效的计算方法。
2025-04-18 15:34:32 4.61MB 模式识别 概率图模型
1
【图像识别】基于Hough变换指针式仪表识别(倾斜矫正)matlab代码.zip这个压缩包文件主要包含了一个使用Matlab实现的图像处理项目,该项目专注于指针式仪表的识别和倾斜矫正。以下是对相关知识点的详细说明: 1. **Hough变换**:Hough变换是一种在图像中检测直线、圆等几何形状的方法。它通过创建一个参数空间(Hough空间),将图像空间中的点映射到Hough空间中的线,从而找出图像中可能存在的直线。在本项目中,Hough变换用于识别仪表盘上的指针。 2. **图像预处理**:在进行图像识别之前,通常需要对原始图像进行预处理,包括灰度化、二值化、噪声去除等步骤。灰度化将彩色图像转换为单色图像,简化后续处理;二值化将图像分为黑白两种颜色,有助于突出目标特征;噪声去除则可以减少不相关信息,提高识别精度。 3. **倾斜矫正**:由于实际拍摄或扫描的图像可能存在角度偏差,因此需要进行倾斜矫正。这通常通过计算图像的透视变换矩阵实现,将图像校正至水平状态,确保指针与坐标轴平行,以便于后续的分析和识别。 4. **边缘检测**:在图像处理中,边缘检测是找出图像中不同亮度区域交界处的重要技术。Canny、Sobel或Prewitt等算法常用于此。在本项目中,边缘检测帮助识别出仪表盘的边界和指针的轮廓。 5. **图像阈值设定**:在二值化过程中,需要设定合适的阈值来区分背景和目标。动态阈值或自适应阈值方法可能更适用于具有复杂光照条件的图像。 6. **图像轮廓提取**:边缘检测后,可以通过查找连续像素点来提取目标物体的轮廓。在本例中,这一步骤有助于分离指针和其他仪表盘元素。 7. **形状分析**:在找到指针的轮廓后,可以通过形状分析(如面积、周长、形状因子等)来确认其是否为目标。指针通常具有特定的形状,如三角形或箭头形,这可以帮助识别。 8. **角度计算**:确定指针角度是识别的关键。这通常通过计算指针端点与基准线(例如仪表盘刻度的垂直线)之间的角度差来完成。可以使用向量的叉乘或极坐标转换来实现。 9. **Matlab编程**:作为标签所示,本项目使用了Matlab,这是一种强大的数值计算和可视化工具,内置丰富的图像处理函数库,使得图像识别和处理任务变得更为便捷。 10. **应用领域**:该技术可应用于工业自动化、机器人视觉导航、智能仪表读取等多个领域,特别是在需要自动读取和理解指针式仪表数据的场景中,例如汽车仪表盘读数的自动记录。 以上就是基于Hough变换的指针式仪表识别及倾斜矫正的Matlab代码所涉及的主要知识点,这些技术在现代图像处理和计算机视觉中有着广泛的应用。通过学习和理解这些概念,可以提升图像识别的准确性和自动化程度。
2025-04-18 13:11:33 1.27MB matlab
1
针对中国机器人及人工智能大赛城市道路识别赛项的基于U-Net的车道线检测模型(包含原始图片,打标之后的文件,以及训练结果) 具体使用方法可参考笔者的上一篇博客:基于U-Net的车道线检测模型(中国机器人及人工智能大赛城市道路识别赛项) U-Net是一种流行的深度学习架构,主要用于图像分割任务,特别适合处理具有小数据集的问题。在自动驾驶领域,U-Net模型可以用来进行车道线检测,这一功能对于确保自动驾驶车辆安全、准确地行驶在道路上至关重要。 在中国机器人及人工智能大赛的城市道路识别赛项中,参赛者需设计和训练一个车道线检测模型。U-Net模型由于其结构设计和性能特点,被广泛应用于这一场景。U-Net模型的核心在于其对称的“U”形架构,该结构通过一系列卷积层、池化层和上采样层来捕获图像的上下文信息。模型的编码器部分负责逐步压缩输入图像,提取特征,而解码器部分则逐步恢复图像的空间分辨率,同时在上采样过程中合并特征,生成最终的分割图。 在车道线检测任务中,U-Net模型的训练数据包括原始道路图像以及相应的标记图像。标记图像中,车道线被清晰地标注出来,通常使用二值化或其他方法,以便模型能够学习区分车道线和其他道路表面。训练过程涉及将这些成对的数据输入模型中,通过反向传播算法调整模型参数,最小化预测分割图和标记图之间的差异。 该模型的成功应用不仅取决于其架构,还依赖于训练过程中的数据质量、标注准确性以及超参数的调整。在训练过程中,通常需要对模型进行多次迭代,不断优化以达到最佳性能。一旦训练完成,模型将能够准确地识别新图像中的车道线,为自动驾驶系统提供关键的视觉信息。 此外,U-Net模型的通用性和高效性使其成为处理医学图像分割、卫星图像分析等其他领域图像分割任务的理想选择。其独特的编码器-解码器结构使得它能够处理图像中的局部特征和全局上下文信息,同时保持空间层级结构,这对于精确的图像分割至关重要。 尽管U-Net模型在多个领域显示出强大的潜力,但其性能仍然受限于训练数据的质量和多样性。未来的研究可能会探索如何通过合成数据、数据增强或其他技术来改善模型的鲁棒性和泛化能力,以应对现实世界中各种复杂和不可预测的场景。 U-Net模型作为图像分割任务中的一个重要工具,其在车道线检测方面的应用是自动驾驶技术进步的一个缩影。通过精心设计的网络架构和严格的训练过程,U-Net不仅能够提供高质量的车道线检测结果,还能够为未来的自动驾驶系统集成提供坚实的技术基础。
2025-04-18 09:12:45 821.69MB 自动驾驶 U-net
1
验证码识别技术是网络安全领域中的一个重要组成部分,主要用于防止自动化的机器人或者恶意软件进行非法操作,如批量注册、恶意登录等。本项目以纯C#语言进行开发,提供了对验证码的识别功能,下面将详细探讨验证码识别的基本原理、C#在其中的角色以及相关技术。 验证码(CAPTCHA)全称为“Completely Automated Public Turing test to tell Computers and Humans Apart”,即全自动区分计算机和人类的图灵测试。它的主要目的是通过设计出人能轻松识别但机器难以解码的图像,来确保网络交互过程中的安全性。 在C#中实现验证码识别,主要涉及以下几个关键知识点: 1. 图像处理:我们需要对验证码图片进行预处理,包括灰度化、二值化、噪声去除等步骤,以便简化图像并突出文字部分。C#中可以使用AForge.NET或Emgu CV等库进行图像处理操作。 2. 文字定位:预处理后的图像中,我们需要找出每个字符的位置。这通常通过边缘检测、连通组件分析或模板匹配来完成。C#中,OpenCV库提供了丰富的图像分析函数,有助于实现这些算法。 3. 文字分割:找到字符位置后,需要将它们从背景中分离出来。这可能涉及到水平投影、垂直投影等方法,以确定每个字符的边界。 4. 字符识别:对分割出的字符进行识别。这一步可以采用基于深度学习的方法,如卷积神经网络(CNN),或者传统的特征提取与分类算法,如SVM、KNN等。C#中,可以利用TensorFlow.NET或MxNet.NET这样的库来构建和训练模型。 5. C#框架:在纯C#环境下,我们可以使用.NET Framework或.NET Core作为开发基础,它们提供了丰富的类库和工具,便于构建跨平台的应用程序。 6. 学习资源:对于初学者,可以参考CSDN(China Software Developer Network)上的文章和教程,这个平台上有很多关于C#验证码识别的源码分享,例如提供的"csdn验证码识别源码",可以作为学习和实践的起点。 7. 性能优化:在实际应用中,验证码识别需要快速响应,因此性能优化是必不可少的。这包括算法优化、多线程处理、内存管理等,以确保系统在高并发下仍能稳定运行。 验证码识别是一个结合了图像处理、模式识别、机器学习等多个领域的复杂任务。通过纯C#开发,我们可以利用丰富的库和框架,实现高效且可靠的验证码识别系统。对于开发者来说,理解和掌握这些知识点,不仅能提升技术水平,也能为网络安全领域贡献自己的力量。
2025-04-18 08:28:29 68KB 验证码识别
1
毕设课设_基于MATLAB的汽车出入库识别系统 ----- 毕业设计,课程设计,项目源码均经过助教老师测试,运行无误,欢迎下载交流 ----- 下载后请首先打开README.md文件(如有),某些链接可能需要魔法打开。 ----- 毕业设计,课程设计,项目源码均经过助教老师测试,运行无误,欢迎下载交流 ----- 下载后请首先打开README.md文件(如有),某些链接可能需要魔法打开。
2025-04-17 20:35:34 1.22MB 毕业设计 matlab
1
车牌识别技术是指运用计算机视觉与图像处理技术,从车辆图像中识别出车牌号码的过程。这项技术在智能交通系统中具有重要的应用价值,如自动收费、交通流量监控、违章车辆识别、停车场管理等。MATLAB作为一种高性能的数值计算与可视化软件,为车牌识别提供了强大的工具支持。 MATLAB提供了丰富的图像处理工具箱,能够方便地处理图像数据,进行图像滤波、边缘检测、图像分割、特征提取和模式识别等操作。车牌识别主要包括几个步骤:图像采集、预处理、车牌定位、字符分割和字符识别。 在图像采集阶段,通过摄像头等设备获取车辆图像。预处理阶段通常包括灰度化、二值化、滤波去噪等操作,目的是改善图像质量,突出车牌区域。车牌定位阶段则利用车牌的几何特征、颜色特征、纹理特征等,通过区域生长、边缘检测、模板匹配等方法在图像中定位出车牌的位置。在字符分割阶段,需要将定位出的车牌区域进一步分割成单个字符。在字符识别阶段,采用模板匹配、神经网络、支持向量机等方法对分割出的字符进行识别,以获取车牌号码。 基于MATLAB的车牌识别源码界面版,可能是集成了上述功能的一个用户友好的图形界面程序。用户可以通过图形界面上传车辆图片,并且直观地看到车牌识别的整个过程和最终结果。这样的界面版程序对于科研人员或者学生来说,是一个很好的学习和研究工具。 此外,车牌识别系统的设计和实现,不仅仅要求有扎实的图像处理知识,还需要对机器学习和模式识别有一定的了解。在字符识别阶段,机器学习算法能够显著提高识别的准确率。MATLAB的机器学习工具箱提供了多种算法,如SVM、决策树、随机森林等,这些都是车牌识别中常用的分类器。 基于MATLAB的车牌识别源码界面版为开发者提供了一套完整的车牌识别解决方案,使得开发者无需从零开始编写代码,大大加快了车牌识别技术的研究和应用开发进程。这对于促进智能交通系统的建设以及提高交通管理的自动化水平具有重要意义。
2025-04-17 20:20:27 723KB matlab
1