电力系统优化相关的,包括代码和文章,直接跳转链接,找本人有机会领取代码
1
Psim电力系统仿真软件 PSIM是趋向于电力电子领域以及电机控制领域的仿真应用包软件。PSIM全称Power Simulation。PSIM是由SIMCAD 和SIMVIEM两个软件来组成的。 PSIM具有仿真高速、用户界面友好、波形解析等功能,为电力电子电路的解析、控制系统设计、电机驱动研究等有效提供强有力的仿真环境。 应用优势 1.用户界面友好,容易掌握,可以加深工程师对电路与系统的原理及工作状态的理解,大大加速电路的设计和试验过程。 2.运行效率十分高 3.输出数据格式兼容性十分好。 PSIM具有强大的仿真引擎,PSIM高效的算法克服了其它多数仿真软件的收敛失败、仿真时间长的问题,因此应用范围广泛。例如,电力电子电路的解析,控制系统设计,电机驱动研究,和其他公司的仿真器连接等。 一个电路在PSIM 里表现为4 个部分:电力电路、控制电路、传感器和开关控制器。
2023-03-04 14:06:56 49.4MB 电学
1
针对电力设备巡检智能化水平较低的现状,文中将增强现实(Augmented Reality,AR)技术应用于电力设备巡检过程。文中从智能巡检终端、服务器与数据库3个层面构建了基于AR技术的电力设备智能巡检系统架构。提出基于AR技术和深度神经网络(Deep Neural Networks,DNN)算法的电力设备故障识别方法,将智能巡检终端采集的图像作为输入,在线识别电力设备可能存在的故障类型。通过仿真测试表明,所提方法故障识别时间与支持向量机(Support Vector Machine, SVM)与BP神经网络(Back Propagation-Neural network, BP-NN)算法相近。但是各类故障识别准确率均大于98%,大于SVM与BP-NN算法,所提方法能够快速准确地识别电力设备故障类型。
1
电力系统分析》上册,华中科技经典教材 经典教材,此本在手,学习无忧。
2023-03-04 10:39:12 2.66MB 电力系统分析 电力 电气
1
概况   电力电缆故障测试仪是用来解决电力电缆开路、短路、接地、低阻、高阻闪络性及高阻泄漏性故障的测试,以及同轴通信电缆和市话电缆的开路、短路故障的测试的电缆专用检测设备。还可以测试电缆路径、埋深,以及电波测速,核定电缆长度等,并可建立电缆档案以便日常维护管理。电缆故障测试仪以西安电子科技大学,西安交通大学(西安交大)相关课题组的研发成果,为着名,被应用到电力、通信、石油化工、煤矿、冶金、航空航天等各个行业,即西安电缆故障测试仪是电缆故障测试领域的先行者。西安东汇电器有限公司依托两大着名学府的研发实力,对电缆故障测试仪做出了重大的改进,T-A20电缆故障测试仪是汲取国内外20家电缆故障测试仪
2023-03-02 22:11:34 64KB 电力电缆故障测试仪
1
电力电缆在运行过程中,必然要出现绝缘老化,甚至引发绝缘击穿,导致供电线路的突发停电事故。绝缘老化的本质是材料性能发生不可逆转的改变,影响老化的因素一般涉及热、电、机械与环境等方面。在线监测通过全系统多测点数据联合分析计算电缆绝缘状况,综合确定漏电或绝缘降低的情况和故障点位置,因而具有重要价值。文章为此主要介绍基于C8051单片机的电力电缆在线监测系统的组成、监测功能和监测原理。
2023-03-02 21:32:58 968KB 电力电缆 单片机 在线监测
1
通过研究电力负荷预测中支持向量机的参数优化问题,将改进后新的粒子群算法导入支持向量机参数中,从而建立一种新的电力负荷预测模型(IPSO-SVM)。首先将支持向量机参数编码为粒子初始位置向量,然后通过对粒子个体之间信息交流、协作的分析找到支持向量机的最优参数,并针对标准粒子群算法的缺陷进行一定的改进,从而应用于电力负荷的建模与预测,最后通过仿真对比实验来测试它的性能。实验结果表明,这种新的电力负荷预测模型能够获得较高精度的电力负荷预测结果,大大减少了训练时间,能够满足电力负荷在线预测要求。
1
在可再生能源大规模接入电力系统的背景下,为了利用不同能源互补特性解决电力系统弃风、弃光的问题,建立风电、光伏发电、凝汽式火电机组、热电机组、燃气轮机、联合循环燃气轮机、梯级水电和抽水储能机组的模型,在此基础上,考虑风电和光伏发电出力的不确定和水、热、电能量平衡,建立基于机会约束目标规划的风-光-水-气-火-储联合优化调度模型。为了提高模型求解效率,利用基于采样的机会约束条件确定性转化方法将机会约束条件转化为混合整数约束条件。算例验证了所提模型的有效性。将所提调度模型与现行火电机组“以热定电”、梯级水电“以水定电”的模式进行对比,结果表明所提协调调度模型能够利用不同机组之间的互补特性提高电力系统运行的灵活性,从而提高可再生能源的消纳能力,降低系统运行成本。
1
某地区电力负荷数据分析与预测.doc
2023-03-02 14:12:36 1.01MB
1
采用的是电容滤波的单相桥式可控整流电路、带PI控制的Buck降压斩波电路、双极性SPWM控制的单相全桥逆变电路,以实现电源电压的交-直-交转换。 对上述仿真结果进行分析,从测量值中可以看出: 单相桥式整流电路的输出值为159.7V,相对误差为0.1875%。软启动时间的相对误差为2.34%。 BUCK降压斩波电路的输出值为75V,纹波为±0.15V,相对误差为0.2%,可以明显看出加装闭环反馈后的斩波电路能将输出值控制在更精确的范围内。 全桥逆变电路输出电压有效值为44.02V,与期望输出电压相差0.02V,相对误差为0.045%。逆变电路的输出频率为185.000Hz,符合设计要求。 由于各元件参数的误差为5%,所以所有输出误差在误差允许范围之内,符合设计目标。 这东西仿真真的是特别慢,一般电脑顶不住的,我2060和R7 4800H都要4小时
1