基于增强现实技术的电力设备故障识别方法研究

上传者: 38663036 | 上传时间: 2023-03-04 13:49:26 | 文件大小: 1.54MB | 文件类型: PDF
针对电力设备巡检智能化水平较低的现状,文中将增强现实(Augmented Reality,AR)技术应用于电力设备巡检过程。文中从智能巡检终端、服务器与数据库3个层面构建了基于AR技术的电力设备智能巡检系统架构。提出基于AR技术和深度神经网络(Deep Neural Networks,DNN)算法的电力设备故障识别方法,将智能巡检终端采集的图像作为输入,在线识别电力设备可能存在的故障类型。通过仿真测试表明,所提方法故障识别时间与支持向量机(Support Vector Machine, SVM)与BP神经网络(Back Propagation-Neural network, BP-NN)算法相近。但是各类故障识别准确率均大于98%,大于SVM与BP-NN算法,所提方法能够快速准确地识别电力设备故障类型。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明