RegNet 介绍 在这项工作中,我们提出了一种通过学习方法来解决非刚性图像配准的方法,而不是通过对预定义的相异性度量进行迭代优化来解决。 我们设计了卷积神经网络(CNN)架构,与所有其他工作相反,该架构直接从一对输入图像中估计位移矢量场(DVF)。 提议的RegNet使用大量的人工生成的DVF进行了训练,没有明确定义相异性度量标准,并且以多种比例集成了图像内容,从而为网络配备了上下文信息。 在测试时,与当前的迭代方法相反,非刚性配准是一次完成的。 引文 [1] , , , , , , 和 ,2019年。。 arXiv预印本arXiv:1908.10235。 [2] , , , , IvanaIšgum和Marius Staring ,2017年9月。 使用多尺度3D卷积神经网络进行非刚性图像配准。 在医学图像计算和计算机辅助干预国际会议上(第232-239页)。 湛
1
Neural Networks and DeepLearning - Michael Nielsen 中文 PDF 带书签 Neural Networks and DeepLearning - Michael Nielsen 中文 PDF 带书签 Neural Networks and DeepLearning - Michael Nielsen 中文 PDF 带书签
2021-10-29 09:28:30 3.24MB 神经网络 深度学习
1
尼尔森神经网络和深度学习 迈克尔尼尔森(Michael Nielsen)的书-。 在线书的源代码在,而相关的许可证在文件LICENSE.mnielsen 。
2021-10-29 09:22:12 41KB Python
1
金字塔形卷积 这是我们的论文的PyTorch实现。 (请注意,这是ImageNet上图像识别的代码。有关语义图像分割/解析的信息,请参见以下存储库: : ) 在ImageNet上训练的模型可以在找到。 PyConv能够提供比基线更高的识别能力(有关详细信息,请参见)。 ImageNet上的准确性(使用默认培训设置): 网络 50层 101层 152层 ResNet 76.12%( ) 78.00%( ) 78.45%( ) PyConvHGResNet 78.48 %( ) 79.22 %( ) 79.36 %( ) PyConvResNet 77.88 %( ) 79.01 %( ) 79.52 %( ) 使用更复杂的训练设置(例如,使用附加数据增强(CutMix),将bach大小增加到1024,学习率0.4,余弦调度程序超过300个纪元以及使用混合精度来加
1
组织病理学检测 创建了一种算法,以识别从较大的数字病理扫描中获取的小图像斑块中的转移癌。 该比赛的数据是对PatchCamelyon(PCam)基准数据集的略微修改版本 动机 乳腺癌的临床诊断最好通过活检来实现。 病理学家通过在显微镜下手动检查组织切片来进行诊断。 但是,传统的诊断系统需要专业知识,只有经验丰富的病理学家才能准确地确定肿瘤组织。 当前,在印度的各个农村地区,人们无法获得良好的医疗保健设施。 另外,农村地区没有新的先进设备,因此甚至有可能无法正确诊断患者。 农村地区医疗状况不佳的主要原因之一是缺乏经验丰富的医生。 数据集 该研究使用的数据集是PatchCamelyon(PCam)[21],[22]的略微修改版本。由于其概率抽样,原始PCam数据集包含重复图像,但是此版本不包含重复图像。 该数据集是开源的,可以从( )下载。 数据集包含超过220K张RGB图像,尺寸为96x
1
图卷积神经网络及其应用,来自中科院计算所沈华伟博士在ICLR 2019顶会上的演讲稿,欢迎大家下载学习。
2021-10-27 20:25:14 1.76MB GNN ICLR_2019
1
压缩文件包括两本最经典的Neural Network Introduction to Neural Networks for Java, 2nd Edition Jeff Heaton Introduction to the Math of Nerural Newtork Jeff Heaton
2021-10-26 18:45:18 3.76MB Neural Network 神经网络
1
医学影像中的机器学习--U-Net 是用于生物图像分割的卷积神经网络(CNN)。 为了保留更精细的特征图,使用了跳过连接来补充更深层中的数据。 在这项工作中,将相同的体系结构用于MRI脑部扫描,以预测一种给予另一种的方式。 这是通过将以两种不同方式扫描的原始MRI体数据切成可在网络上进行训练的2D图像来完成的。 该网络是使用 (用于CNN的MATLAB工具箱)实现的。
1
MIT 学习神经网络经典书籍 Like the first edition, which it replaces, this volume is inspired by two great questions: “How does the brain work?” and “How can we build intelligent machines?” As in the first edition, the heart of the book is a set of close to 300 articles in Part III which cover the whole spectrum of Brain Theory and Neural Networks.
2021-10-24 11:16:10 25.41MB Neural Networks 深度学习
1
Pytorch-图像分类 使用pytorch进行图像分类的简单演示。 在这里,我们使用包含43956 张图像的自定义数据集,属于11 个类别进行训练(和验证)。 此外,我们比较了三种不同的训练方法。 从头开始培训,微调的convnet和convnet为特征提取,用预训练pytorch模型的帮助。 使用的模型包括: VGG11、Resnet18 和 MobilenetV2 。 依赖关系 Python3,Scikit学习 Pytorch, PIL Torchsummary,Tensorboard pip install torchsummary # keras-summary pip install tensorboard # tensoflow-logging 注意:在训练之前将库更新到最新版本。 怎么跑 下载并提取训练数据集: 运行以下脚本进行训练和/或测试 python t
1