这时作者自己在24年电赛e题时使用的原版代码,里面的注释已经比较详细了,基本可以完美的滤波和识别。因为硬件之间的差异,我的硬件openmv在识别时有很大的噪音,为了去除噪音,我使用的各种滤波和识别的方法进行结合,使得硬件和环境在比较恶劣的情况下也可进行识别。
2024-08-20 12:09:39 24KB python openmv
1
Go-boltBrowser是一款专为管理BoltDB数据库而设计的Web界面工具,它提供了一个直观且用户友好的方式来查看、操作和管理BoltDB的数据。BoltDB是由GitHub上的go-bolt项目维护的一个轻量级、文件级别的键值存储系统,主要由Go语言编写,适合用于需要快速、可靠且低资源消耗的场景。 BoltDB的设计理念是简单易用,同时保持高效性能。它使用B+树的数据结构,这使得数据读写速度快,磁盘空间利用率高。BoltDB支持事务处理,确保数据的一致性和完整性。Go-boltBrowser则是这个数据库系统的可视化前端,让开发者和运维人员无需通过命令行或编写代码就能进行数据操作。 Go-boltBrowser的核心特性包括: 1. **数据浏览**:用户可以通过Web界面浏览BoltDB中的所有桶(buckets)和键值对。它可以清晰地展示数据结构,帮助理解数据组织方式。 2. **搜索功能**:内置搜索功能允许用户根据键或值快速查找特定数据,方便数据定位和分析。 3. **数据编辑**:用户可以直接在浏览器中编辑键值对的内容,支持创建、修改和删除操作,便于数据调试和管理。 4. **事务处理**:虽然BoltDB本身支持事务,但Go-boltBrowser可能提供了图形化的事务管理,让用户可以安全地进行多步操作,确保数据一致性。 5. **版本控制**:Go-boltBrowser可能具备版本控制功能,允许用户查看历史版本,便于回滚到特定状态,这对于数据恢复和问题排查非常有用。 6. **导出导入**:数据的导出和导入功能使得用户可以轻松备份数据库或在不同环境间迁移数据。 7. **安全性**:由于是Web应用,安全性是必不可少的。Go-boltBrowser可能有基本的身份验证和授权机制,以保护数据库免受未经授权的访问。 8. **轻量级**:Go-boltBrowser作为一款基于Go的工具,保持了Go语言的轻量化特点,部署简单,对系统资源需求较低。 9. **跨平台**:由于Go的跨平台特性,Go-boltBrowser可以在多种操作系统上运行,包括Windows、Linux和macOS等。 10. **开源社区支持**:作为开源项目,Go-boltBrowser持续接受社区的贡献和改进,这意味着其功能会不断更新和完善,以满足用户的需求。 Go-boltBrowser是Go开发者和BoltDB用户的一款强大工具,它简化了BoltDB的管理和操作,提高了开发效率,并且通过Web界面提供了良好的用户体验。对于那些需要直接查看和操作数据库的场景,Go-boltBrowser无疑是一个值得尝试的解决方案。
2024-08-20 11:04:49 2.42MB Go开发-其它杂项
1
《RhinoPythonPrimerRev3原厂教程》是专为Rhino用户提供的Python编程学习资料,旨在帮助用户掌握如何在Rhino环境中利用Python语言进行高效建模和脚本编写。Rhino,全称Rhinoceros 3D,是一款强大的三维建模软件,广泛应用于建筑设计、工业设计和产品造型等领域。Python作为一门易于学习、功能丰富的编程语言,被引入到Rhino中,极大地扩展了其功能和自动化潜力。 本教程分为多个章节,逐步讲解Python在Rhino中的应用基础和高级技巧。从Python的基础语法入手,包括变量、数据类型、流程控制(如条件语句和循环)、函数定义和调用等,这些都是Python编程的基础,也是进一步学习的关键。接着,教程会深入到Rhino特定的Python库,如RhinoCommon和Grasshopper,这些库提供了与Rhino模型交互的API,使用户能够通过代码创建、修改和分析几何体。 在RhinoPythonPrimerRev3中,你会学习如何使用Python进行几何对象的操作,如创建点、线、面和实体,以及如何组合和修改这些对象。此外,教程还会涵盖文件输入输出,如读写Rhino模型文件(.3dm)和其他格式的数据文件。通过学习,你将能够编写脚本来批量处理模型,实现参数化设计,或者创建自定义插件以满足特定需求。 进一步,教程还会涉及Rhino的图形用户界面(GUI)编程,教你如何使用Python创建定制的工具栏、面板和对话框,提升Rhino的工作流效率。Grasshopper,Rhino的一个可视化编程环境,也是Python的重要应用场景。通过Python接口,你可以实现Grasshopper组件的编写,使得复杂的算法逻辑可以通过图形化方式直观展现和编辑。 教程可能还会包含一些实战案例,如建筑信息模型(BIM)的处理、参数化设计的实现以及与外部程序的集成。这些案例将帮助你将所学知识应用到实际工作中,提高工作效率。 《RhinoPythonPrimerRev3原厂教程》是一份全面且实用的学习资源,无论你是Rhino新手还是有经验的用户,都能从中获益,提升你的数字设计能力。通过深入学习和实践,你将能够利用Python的力量,让Rhino成为你创意实现的强大工具。
2024-08-20 08:04:30 8.44MB rhino python
1
1.版本:matlab2014/2019a/2021a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信 %% 开发者:Matlab科研助手 %% 更多咨询关注天天Matlab微信公众号 ### 团队长期从事下列领域算法的研究和改进: ### 1 智能优化算法及应用 **1.1 改进智能优化算法方面(单目标和多目标)** **1.2 生产调度方面** 1.2.1 装配线调度研究 1.2.2 车间调度研究 1.2.3 生产线平衡研究 1.2.4 水库梯度调度研究 **1.3 路径规划方面** 1.3.1 旅行商问题研究(TSP、TSPTW) 1.3.2 各类车辆路径规划问题研究(vrp、VRPTW、CVRP) 1.3.3 机器人路径规划问题研究 1.3.4 无人机三维路径规划问题研究 1.3.5 多式联运问题研究 1.3.6 无人机结合车辆路径配送 **1.4 三维装箱求解** **1.5 物流选址研究** 1.5.1 背包问题 1.5.2 物流选址 1.5.4 货位优化 ##### 1.6 电力系统优化研究 1.6.1 微电网优化 1.6.2 配电网系统优化 1.6.3 配电网重构 1.6.4 有序充电 1.6.5 储能双层优化调度 1.6.6 储能优化配置 ### 2 神经网络回归预测、时序预测、分类清单 **2.1 bp预测和分类** **2.2 lssvm预测和分类** **2.3 svm预测和分类** **2.4 cnn预测和分类** ##### 2.5 ELM预测和分类 ##### 2.6 KELM预测和分类 **2.7 ELMAN预测和分类** ##### 2.8 LSTM预测和分类 **2.9 RBF预测和分类** ##### 2.10 DBN预测和分类 ##### 2.11 FNN预测 ##### 2.12 DELM预测和分类 ##### 2.13 BIlstm预测和分类 ##### 2.14 宽度学习预测和分类 ##### 2.15 模糊小波神经网络预测和分类 ##### 2.16 GRU预测和分类 ### 3 图像处理算法 **3.1 图像识别** 3.1.1 车牌、交通标志识别(新能源、国内外、复杂环境下车牌) 3.1.2 发票、身份证、银行卡识别 3.1.3 人脸类别和表情识别 3.1.4 打靶识别 3.1.5 字符识别(字母、数字、手写体、汉字、验证码) 3.1.6 病灶识别 3.1.7 花朵、药材、水果蔬菜识别 3.1.8 指纹、手势、虹膜识别 3.1.9 路面状态和裂缝识别 3.1.10 行为识别 3.1.11 万用表和表盘识别 3.1.12 人民币识别 3.1.13 答题卡识别 **3.2 图像分割** **3.3 图像检测** 3.3.1 显著性检测 3.3.2 缺陷检测 3.3.3 疲劳检测 3.3.4 病害检测 3.3.5 火灾检测 3.3.6 行人检测 3.3.7 水果分级 **3.4 图像隐藏** **3.5 图像去噪** **3.6 图像融合** **3.7 图像配准** **3.8 图像增强** **3.9 图像压缩** ##### 3.10 图像重建 ### 4 信号处理算法 **4.1 信号识别** **4.2 信号检测** **4.3 信号嵌入和提取** **4.4 信号去噪** ##### 4.5 故障诊断 ##### 4.6 脑电信号 ##### 4.7 心电信号 ##### 4.8 肌电信号 ### 5 元胞自动机仿真 **5.1 模拟交通流** **5.2 模拟人群疏散** **5.3 模拟病毒扩散** **5.4 模拟晶体生长** ### 6 无线传感器网络 ##### 6.1 无线传感器定位 ##### 6.2 无线传感器覆盖优化 ##### 6.3 室内定位 ##### 6.4 无线传感器通信及优化 ##### 6.5 无人机通信中继优化 #####
2024-08-19 16:57:32 25.24MB matlab
1
Based on python and vuejs 微信公众号采集 Python爬虫 公众号采集 公众号爬虫 公众号备份 爬虫(Web Crawler)是一种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据并存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫从一个或多个初始URL开始,递归或迭代地发现新的URL,构建一个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 爬虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python中的Requests库。 解析内容: 爬虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助爬虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 爬虫将提取的数据存储到数据库、文件或其他存储介质中,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反爬虫机制,爬虫需要遵守网站的robots.txt协议,限制访问频率和深度,并模拟人类访问行为,如设置User-Agent。 反爬虫应对: 由于爬虫的存在,一些网站采取了反爬虫措施,如验证码、IP封锁等。爬虫工程师需要设计相应的策略来应对这些挑战。 爬虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用爬虫需要遵守法律和伦理规范,尊重网站的使用政策,并确保对被访问网站的服务器负责。
2024-08-19 05:06:22 12.99MB python 爬虫 数据收集
1
在IT领域,坐标系统是地理信息系统(GIS)中的核心元素之一。不同的坐标系统有不同的参考框架,这直接影响到地理位置的精确表示。"火星百度坐标转WGS84坐标小工具"是一个专为解决中国地区坐标转换问题而设计的实用程序。在本篇文章中,我们将深入探讨这个工具的工作原理、涉及的技术以及其在实际应用中的重要性。 我们来了解一下标题中的“火星坐标”和“百度坐标”。这是中国境内广泛使用的两种加密坐标系统,它们并非真正与火星或百度搜索引擎有关,而是对国际通用的WGS84坐标系统的替代。其中,“火星坐标”通常指的是GCJ-02坐标系,由国家测绘局推出,用于保护国家安全。而“百度坐标”则是百度地图采用的私有坐标系,它在此基础上进一步进行了偏移处理。 WGS84(World Geodetic System 1984)是一种全球通用的大地坐标系统,广泛应用于GPS定位和国际地图制作。由于百度和火星坐标与WGS84存在偏差,所以在进行GIS分析或者使用来自不同来源的数据时,就需要进行坐标转换。 这个"百度坐标转wgs84.exe"和"火星坐标转wgs84.exe"程序文件,正是为了实现这种转换而创建的。它们可能采用了反编译百度或火星坐标算法,然后通过编程语言(如Python)实现,使得用户无需深入了解复杂的数学模型就能快速转换坐标。 "说明.txt"文件可能包含了工具的使用方法、注意事项以及转换的理论基础。用户在使用前应仔细阅读,确保正确操作。"POI.xlsx"文件则可能是包含地理位置信息的点兴趣数据,如商业设施、公共服务等,这些数据可能以百度或火星坐标表示,通过工具转换后,可以与国际标准的GIS系统更好地兼容。 坐标转换在GIS项目中起着关键作用,例如在地理定位、路径规划、遥感图像分析等方面。这个小工具简化了这一过程,使得非专业人员也能方便地处理坐标数据。在实际应用中,它可能被用于户外活动的导航、地图应用开发、地理数据分析等领域。 "火星百度坐标转WGS84坐标小工具"是GIS技术在中国本土化应用的一个实例,它有效地解决了因坐标系统差异带来的问题,提高了数据处理的效率和准确性。对于需要处理中国地理数据的人来说,这是一个非常实用的资源。
2024-08-18 10:47:29 336.65MB python 坐标转换 WGS84
1
在IT行业中,雷达数据处理是一项重要的任务,尤其是在气象学、航空航天和国防等领域。Py-ART(Python ARM Radar Toolkit)是一个强大的开源库,专门用于分析和可视化雷达数据。本篇文章将深入探讨如何使用Py-ART来生成网格化的雷达产品,帮助你理解和应用这个工具。 了解"雷达网格化"的概念至关重要。雷达网格化是将雷达数据投影到一个二维或三维的网格上,使得数据可以被空间上连续地分析和处理。这个过程通常涉及到距离折叠、地理校准和插值等步骤,确保数据准确地反映实际天气现象的空间分布。 Py-ART库为雷达数据处理提供了丰富的功能,包括数据读取、质量控制、回波强度计算、风暴跟踪等。其中,生成网格化雷达产品是其核心功能之一。下面我们将详细讨论如何利用Py-ART实现这一目标: 1. **数据读取**:Py-ART支持多种雷达数据格式,如NEXRAD Level 2和Level 3数据、ARM雷达数据等。你可以使用`pyart.io.read`函数读取数据文件,将其转化为Py-ART的`Radar`对象。 2. **设置网格参数**:在生成网格之前,需要定义网格的参数,包括经纬度范围、分辨率、高度层等。这可以通过`pyart.grid.RadarGridParameters`类来完成。 3. **网格化雷达数据**:有了`Radar`对象和网格参数后,可以使用`pyart.grid.radar_to_grid`函数将雷达数据投影到预设的网格上。这个过程会涉及到插值算法,如最近邻、线性或高阶多项式插值,以将雷达点数据转换为连续的网格面。 4. **处理和分析网格数据**:一旦数据网格化,你可以使用Py-ART提供的各种工具进行进一步分析,如计算反射率因子、速度、谱宽等。同时,还可以执行质量控制,识别并剔除噪声和异常值。 5. **可视化网格数据**:Py-ART集成了matplotlib库,可以方便地绘制出网格数据的图像,如反射率图、速度图等。通过`pyart.graph.RadarDisplay`类,你可以自定义颜色图、轮廓线、地图背景等视觉效果。 6. **保存和共享网格产品**:可以将网格数据和相关的可视化结果保存为常见格式,如NETCDF或图像文件,便于进一步分析或与其他用户分享。 通过实践以上步骤,你将能够熟练地使用Py-ART生成网格化的雷达产品,从而更好地理解雷达数据并进行气象分析。在Python环境中,Py-ART提供了高效且灵活的工具,使得雷达数据处理变得简单而直观。无论你是科研人员还是工程师,都能从中受益,提高你的数据分析能力。
2024-08-17 23:24:24 13KB radar Python
1
这个脚本是一个用于某短视频平台的自动化养号脚本,它的目的是通过模拟用户的常规操作来提高账号的活跃度和互动率。以下是脚本的主要功能和组成部分的说明: 准备:Python环境。安装uiautomator2库 需要ADB工具,Android设备。 脚本功能: 自动观看视频:脚本模拟用户观看视频的行为,根据视频内容随机决定观看时长。 随机点赞:根据设定的概率和视频内容决定是否点赞。 关注其他用户:同样基于随机概率和视频内容来决定是否关注视频发布者。 发表评论:从预设的评论库中随机选择评论并发表。 核心逻辑: 使用uiautomator2连接Android,并进行元素定位和操作。 通过分析视频标题和描述中的关键词来决定互动。 使用随机数来模拟用户行为的不确定性。 通过ADB命令模拟输入法切换和发送广播,以实现评论的输入和发送。 运行方式: 确保所有环境和依赖项已正确设置。 修改脚本中的设备名称以匹配实际情况。 运行脚本。 注意: 过度自动化可能违反视频App的服务条款,应谨慎使用。 脚本的行为应符合视频App平台的规则和指南。 脚本的稳定性和效果可能受到App版本更新和设备差异的影响。
2024-08-17 18:31:35 8KB android python
1
本程序使用python进行编译,实现了高校二手闲置品交易平台的设计。程序包含如下内容: 用户注册登录:平台应该支持用户注册和登录功能,以便用户可以创建个人账户并上传自己的闲置品。 闲置品上传:用户应该能够上传自己的闲置品,包括物品的图片、描述、价格等信息。 闲置品搜索与浏览:平台应该提供搜索和浏览功能,以便用户可以方便地找到自己需要的物品。 闲置品交流与交易:平台应该支持用户之间的交流和交易功能,例如私信、议价、下单等。 数据分析与统计:平台应该能够进行数据分析和统计,以便了解用户的交易行为和需求,为平台的优化提供依据。
2024-08-16 15:35:52 3KB python 数据分析 二手交易平台
1
配套文章:https://blog.csdn.net/qq_36584673/article/details/136861864 文件说明: benchmark_results:保存不同倍数下测试集的测试结果 data:存放数据集的文件夹,包含训练集、测试集、自己的图像/视频 epochs:保存训练过程中每个epoch的模型文件 statistics:存放训练和测试的评估指标结果 training_results:存放每一轮验证集的超分结果对比,每张图像5行3列展示 data_utils.py:数据预处理和制作数据集 demo.py:任意图像展示GT、Bicubic、SRGAN可视化对比结果 draw_evaluation.py:绘制Epoch与Loss、PSNR、SSIM关系的曲线图 loss.py:损失函数 model.py:网络结构 test_benchmark.py:生成benchmark测试集结果 test_image.py:生成任意单张图像用SRGAN超分的结果 test_video.py:生成SRGAN视频超分的结果 train.py:训练SRGAN 使用方法见文章。
2024-08-16 14:23:17 231.09MB pytorch 超分辨率 超分辨率重建 python
1