LSTM回归预测与WOA鲸群优化算法
2022-08-28 21:05:55 26KB 进化计算与深度学习的结合
1
lstm 网络的资源,python实现
2022-08-19 12:05:12 5KB lstm
1
Gobal Attention的目的:是为了在生成上下文向量(也可以认为是句向量)时将所有的hidden state都考虑进去。Attention机制认为每个单词在一句话中的重要程度是不一样的,通过学习得到一句话中每个单词的权重。即为关注重要特征,忽略无关特征。 本代码采样keras2.2.4\tensorflow1.12进行实现的。
1
Modified CNN-LSTM for Pain Facial Expressions Recognition10 PUBLICATIONS 4 CITAT
2022-08-03 13:01:12 835KB cnn lstm
1
使用pytorch搭建的简单的LSTM多变量多输出时间序列预测的使用例。 生成了多个以sinx、cosx、tanx构成的序列,使用[i:i+50]的数据预测[i+51]的数据。x是步长为0.1的等差数列 作者初学时用来当说明文档使用,程序适合初学者捣鼓,注释写的很详细了
2022-07-29 09:07:53 3KB LSTM Python pytorch deep
1
SSAGAN预训练的 DAMSM 模型,包括文本编码器text encoder和图像编码器image encoder,其中text encoder是双向LSTM模型,image encoder是CNN模型。在文件中均已经预训练好了的第200轮。 下载后将其上传到 DAMSMencoders目录下并进行解压
2022-07-24 21:05:32 87.15MB 文本生成图像 T2I gan LSTM
1
随着我国经济制度和保障体制的不断完善,股票市场变得越来越热门,每年投资者的数量都在不断增加,所以如何有效地对股票价格进行预测成为研究领域的一个热门。 本文基于长短期记忆网络(LSTM,Long Short-Term Memory)神经网络模型,建立股价预测模型。训练数据选取了贵州茅台股票数据,然后选取其开盘价、收盘价、最高价和最低价作为四个输入特征进行训练。在优化算法方面,本文选择了很适用于LSTM模型的Adam(Adaptive moment estimation)算法。在模型结构方面,本文通过不断地修改学习率和训练轮数,调整模型的精确度。特别地,为获得更好的预测结果,本文对上述模型进行了改进,将三层神经网络改进为四层神经网络,实现新模型的均方误差(MSE,Mean Square Error)相比旧模型同输入特征的MSE下降了约47%。 从实验结果来看,在预测短期内的股价时,本模型的效果较好;在预测长期内的股价时,预测值和实际值有一定的差距,但是预测值的趋势和实际值的趋势大体一致,所以该模型在股价预测上有一定的实用价值。
2022-07-20 11:05:39 716KB 股票预测 LSTM
1
torchtext的使用总结,并结合Pytorch实现LSTM 版本说明 PyTorch版本:0.4.1 火炬文字:0.2.3 python:3.6 文件说明 Test-Dataset.ipynb Test-Dataset.py使用torchtext进行文本预处理的笔记本和py版。 Test-Dataset2.ipynb使用Keras和PyTorch进行数据集进行文本预处理。 Language-Model.ipynb使用gensim加载预训练的词向量,并使用PyTorch实现语言模型。 使用说明 分别提供了笔记本版本和标准py文件版本。 从零开始逐步实现了torchtext文本预处理,
2022-07-20 01:38:55 43KB python nlp pytorch torchtext
1
TensorFlow LSTM 写诗代码与数据
2022-07-15 16:39:24 65.5MB tensorflow lstm 深度学习 python
1