一、什么是OpenCV OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。它由英特尔公司发起并参与开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV提供了大量的计算机视觉、图像处理和模式识别的算法,包括实时图像处理、视频分析、特征检测、目标跟踪、人脸识别、物体识别、图像分割、光流法、立体视觉、运动估计、机器学习和深度学习等。 OpenCV是一个跨平台的库,支持多种操作系统,包括Linux、Windows、Android、Mac OS和iOS等。它使用C++编写,同时也提供了Python、Java、MATLAB等语言的接口,方便不同编程语言的开发者使用。由于OpenCV的开源性和跨平台性,它已经成为计算机视觉领域最受欢迎的库之一,广泛应用于工业检测、医学影像处理、智能交通系统、安防监控系统、机器人视觉、游戏开发等领域。
1
EnlightenGAN, RUAS, SCI, URetinex-Net, Zero-DCE, Zero-Dce++六大算法综合的可执行程序。具体请参考本程序的同名文章:《弱光图像增强算法(6大算法附程序),一站式解决论文实验比较部分》。这篇文章里有如何使用。我的预训练模型已经放在了程序里面。欢迎关注我的博客。后面会持续更新。
2024-06-28 10:35:58 35.77MB 深度学习 图像增强 算法比较
1
python模拟高考录取
2024-06-27 19:59:40 4.95MB python 数据处理 学习笔记
1
包含windwos-caffe源码、faster-rcnn 、ssd、lstm ,自己之前用过的深度学习源码全部打包一起上传。
2024-06-27 12:19:30 43.57MB caffe faster-rcnn ssd lstm
1
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。它专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。机器学习是人工智能的核心,是使计算机具有智能的根本途径。 随着统计学的发展,统计学习在机器学习中占据了重要地位,支持向量机(SVM)、决策树和随机森林等算法的提出和发展,使得机器学习能够更好地处理分类、回归和聚类等任务。进入21世纪,深度学习成为机器学习领域的重要突破,采用多层神经网络模型,通过大量数据和强大的计算能力来训练模型,在计算机视觉、自然语言处理和语音识别等领域取得了显著的成果。 机器学习算法在各个领域都有广泛的应用,包括医疗保健、金融、零售和电子商务、智能交通、生产制造等。例如,在医疗领域,机器学习技术可以帮助医生识别医疗影像,辅助诊断疾病,预测病情发展趋势,并为患者提供个性化的治疗方案。在金融领域,机器学习模型可以分析金融数据,识别潜在风险,预测股票市场的走势等。 未来,随着传感器技术和计算能力的提升,机器学习将在自动驾驶、智能家居等领域发挥更大的作用。同时,随着物联网技术的普及,机器学习将助力智能家居设备实现更加智能化和个性化的功能。在工业制造领域,机器学习也将实现广泛应用,如智能制造、工艺优化和质量控制等。 总之,机器学习是一门具有广阔应用前景和深远影响的学科,它将持续推动人工智能技术的发展,为人类社会的进步做出重要贡献。
2024-06-27 10:12:39 11.47MB 机器学习
1
Java基于机器学习进行软件系统故障预测系统源码.zip
2024-06-27 09:37:26 216KB java
1
1111111111备用
2024-06-27 09:25:49 55.87MB OpenFOAM
1
FreeRTOS初学者的福音
2024-06-26 15:16:02 3.21MB
1
针对某一具体问题(例如,可以来源于当前时事和大学学习、生活、竞赛等紧密相关的topic(如天气、生态环境、各类竞赛等)),采用机器学习算法实现其分类、识别、预测等。 如:基于SVM的图像分类或回归,通过特征参数提取,训练得到SVM模型,再利用该模型对图像进行分类;或用深度学习模型来自动提取特征+预测等等。 1. 题目(选个有意思、吸引眼球、言简意赅的题目很重要); 2. 中英文摘要和关键词; 3. 背景(问题描述,应用意义,研究现状,存在挑战,解决方案等); 4. 原理方法(对所用的机器学习算法进行原理介绍,图,文,公式,重点是模型的输入输出参数); 5. 解决方案(对所解决问题的方案进行详细描述,重点解决方案中的模型,图,文,公式,模型参数训练,特征提取,学习算法等); 6. 实验结果分析(给出所实现的结果,图文描述(含该模型的过拟合分析),若有对比结果可加分); 7. 结论(描述本文所解决的问题,与传统方法的优势,还存在哪些待解决的问题);
2024-06-26 13:39:29 24.86MB 机器学习 聚类 课程设计 预测模型
1
分享一种强化学习的建模过程,它是将通信当中的资源分配问题建立成强化学习方法,资源分配是指通信网络中,频谱资源、信道、带宽、天线功率等等是有限的,怎么管理这些资源来保证能够通信的同时优化整个网络吞吐量、功耗,这个就是网络资源分配。这里多智能体就是涉及博弈论的思想。
2024-06-26 09:50:15 935KB 强化学习 多智能体 无人机 资源分配
1