Climate_change_2038:我们比较了1993年至2015年的温度,海平面,CO2排放量和人口数据。 我们使用机器学习预测来回答“温度何时会升至16.37

上传者: 42152298 | 上传时间: 2025-12-11 15:21:20 | 文件大小: 92.76MB | 文件类型: ZIP
《气候变化2038:基于历史数据的机器学习预测分析》 全球气候变暖是当前世界面临的重大挑战之一。为了预测未来的气候变化趋势,科学家们利用各种数据和工具进行深入研究。在“Climate_change_2038”项目中,研究人员对比了1993年至2015年间的温度、海平面、二氧化碳排放量和人口数据,通过机器学习算法预测了温度上升至16.37℃的时间节点。 该项目采用Python编程语言进行数据处理和分析,这是数据分析领域广泛使用的工具,拥有丰富的库和模块支持。其中,`scikit-learn`库是一个强大的机器学习工具箱,它包含多种预处理方法、模型选择和评估工具,以及多种回归算法,如线性回归、决策树、随机森林等,可用于预测温度变化。 `jupyter-notebook`是一个交互式的工作环境,它允许研究人员编写、运行和展示代码,以及创建具有文本、图像和代码的综合报告,使得数据分析过程更加透明且易于分享。在这个项目中,`jupyter-notebook`可能被用来展示数据可视化和模型训练过程。 数据可视化方面,`matplotlib`库是一个不可或缺的工具,它提供了绘制2D图形的功能,可以用于绘制温度、海平面、二氧化碳排放量等随时间变化的趋势图。同时,`tableau`是一款强大的数据可视化软件,它能创建复杂的数据仪表板,帮助用户更好地理解数据和模型预测结果。 在模型构建过程中,`prophet-model`是一个由Facebook开源的时间序列预测框架,特别适合处理季节性和趋势性数据。在本项目中,它可能被用来建立温度预测模型,考虑到温度变化的周期性和长期趋势。 此外,项目还提到了`scikit-learnJupyterNotebook`,这可能是项目代码的特定部分或者是一个自定义的库,用于整合`scikit-learn`的功能,并在Jupyter Notebook环境中进行操作。 通过这个项目,我们可以看到数据科学在解决复杂问题上的力量。通过收集历史数据、构建预测模型,并利用机器学习算法,研究人员能够对未来的气候变化趋势做出科学的预测。这样的工作对于制定应对策略,减少全球变暖的负面影响至关重要。随着技术的发展,我们可以期待更精确的预测和更有效的解决方案,以应对这个全球性的挑战。

文件下载

资源详情

[{"title":"( 70 个子文件 92.76MB ) Climate_change_2038:我们比较了1993年至2015年的温度,海平面,CO2排放量和人口数据。 我们使用机器学习预测来回答“温度何时会升至16.37","children":[{"title":"climate_change_2038-master","children":[{"title":"Temp_Scrub.ipynb <span style='color:#111;'> 91.71KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 14.43KB </span>","children":null,"spread":false},{"title":"x_MinTemp_y_MaxTemp_correlation.ipynb <span style='color:#111;'> 99.38KB </span>","children":null,"spread":false},{"title":"x_CO2_y_Temperature_correlation.ipynb <span style='color:#111;'> 72.91KB </span>","children":null,"spread":false},{"title":"population_scrub.ipynb <span style='color:#111;'> 34.86KB </span>","children":null,"spread":false},{"title":"sealevel_scrub_2_for_visuals_by_day.ipynb <span style='color:#111;'> 24.59KB </span>","children":null,"spread":false},{"title":"climate_combined.ipynb <span style='color:#111;'> 36.62KB </span>","children":null,"spread":false},{"title":"Temp_Scrub-AllYears.ipynb <span style='color:#111;'> 85.68KB </span>","children":null,"spread":false},{"title":"x_Population_y_Temperature_correlation.ipynb <span style='color:#111;'> 76.22KB </span>","children":null,"spread":false},{"title":"climate_combined_forprophet.ipynb <span style='color:#111;'> 39.86KB </span>","children":null,"spread":false},{"title":"x_Year_y_Temperature_correlation.ipynb <span style='color:#111;'> 95.62KB </span>","children":null,"spread":false},{"title":"prophet_timeseries_prediction_final.ipynb <span style='color:#111;'> 3.59MB </span>","children":null,"spread":false},{"title":"images","children":[{"title":"sealevel_overtime_1993-2015.png <span style='color:#111;'> 14.68KB </span>","children":null,"spread":false},{"title":"Tableau_all_fig1.png <span style='color:#111;'> 86.08KB </span>","children":null,"spread":false},{"title":"Temp_to_Uncertainty_scatter.png <span style='color:#111;'> 21.71KB </span>","children":null,"spread":false},{"title":"annual_CO2_by_country.png <span style='color:#111;'> 222.88KB </span>","children":null,"spread":false},{"title":"MinMax_Temp_scatter_test.png <span style='color:#111;'> 18.23KB </span>","children":null,"spread":false},{"title":"ML_change_temp_fig4.png <span style='color:#111;'> 24.62KB </span>","children":null,"spread":false},{"title":"CO2_emission_ppm.png <span style='color:#111;'> 16.79KB </span>","children":null,"spread":false},{"title":"CO2_emission_tons_per_capita.png <span style='color:#111;'> 714.67KB </span>","children":null,"spread":false},{"title":"ML_train_model_fig8.png <span style='color:#111;'> 28.33KB </span>","children":null,"spread":false},{"title":"CO2_emission_overtime.png <span style='color:#111;'> 16.31KB </span>","children":null,"spread":false},{"title":"ML_fig2.png <span style='color:#111;'> 28.44KB </span>","children":null,"spread":false},{"title":"ML_fig1.png <span style='color:#111;'> 28.44KB </span>","children":null,"spread":false},{"title":"sealevel__removed_outliers-1993-2020.png <span style='color:#111;'> 23.61KB </span>","children":null,"spread":false},{"title":"ML_forecast_yearly_fig7.png <span style='color:#111;'> 28.33KB </span>","children":null,"spread":false},{"title":"ML_forecast_yearly_fig8.png <span style='color:#111;'> 28.33KB </span>","children":null,"spread":false},{"title":"ML_train_model_fig9.png <span style='color:#111;'> 15.09KB </span>","children":null,"spread":false},{"title":"sealevel_scrub_fig1.png <span style='color:#111;'> 15.40KB </span>","children":null,"spread":false},{"title":"ML_basic_fig1.png <span style='color:#111;'> 56.92KB </span>","children":null,"spread":false},{"title":"sealevel_removed_outliers-1993-2015.png <span style='color:#111;'> 14.67KB </span>","children":null,"spread":false},{"title":"sealevel_scrub_fig2.png <span style='color:#111;'> 13.82KB </span>","children":null,"spread":false},{"title":"pop_to_temp.png <span style='color:#111;'> 21.61KB </span>","children":null,"spread":false},{"title":"Year_to_Temp_scatter.png <span style='color:#111;'> 16.81KB </span>","children":null,"spread":false},{"title":"ML_forecast_temp_fig6.png <span style='color:#111;'> 25.42KB </span>","children":null,"spread":false},{"title":"Min_Max_Temp_scatter.png <span style='color:#111;'> 24.03KB </span>","children":null,"spread":false},{"title":"population_to_co2.png <span style='color:#111;'> 18.87KB </span>","children":null,"spread":false},{"title":"sealevelovertime1993-2020.png <span style='color:#111;'> 22.47KB </span>","children":null,"spread":false},{"title":"Min_vs_Max_Temp.png <span style='color:#111;'> 25.01KB </span>","children":null,"spread":false},{"title":"population_growth.png <span style='color:#111;'> 18.44KB </span>","children":null,"spread":false},{"title":"Year_to_Temp_correlation.png <span style='color:#111;'> 22.25KB </span>","children":null,"spread":false},{"title":"ML_.png <span style='color:#111;'> 28.44KB </span>","children":null,"spread":false},{"title":"ML_trend_fig2.png <span style='color:#111;'> 41.76KB </span>","children":null,"spread":false},{"title":"ML_forecast_temp_fig5.png <span style='color:#111;'> 21.46KB </span>","children":null,"spread":false}],"spread":false},{"title":"emission_scrub.ipynb <span style='color:#111;'> 70.41KB </span>","children":null,"spread":false},{"title":"Sealevel_visualizations.ipynb <span style='color:#111;'> 99.99KB </span>","children":null,"spread":false},{"title":"Temp_Scrub-AllYears-Min-Max.ipynb <span style='color:#111;'> 43.70KB </span>","children":null,"spread":false},{"title":"population_to_co2_ml.ipynb <span style='color:#111;'> 50.64KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"sealevel_data__all_1993-2020.csv <span style='color:#111;'> 10.69KB </span>","children":null,"spread":false},{"title":"temp_data-AllYears-Min-Max.csv <span style='color:#111;'> 3.95KB </span>","children":null,"spread":false},{"title":"CO2_data.csv <span style='color:#111;'> 556B </span>","children":null,"spread":false},{"title":"datestamp.csv <span style='color:#111;'> 256B </span>","children":null,"spread":false},{"title":"rm_outliers_grouped_sealevel_data.csv <span style='color:#111;'> 492B </span>","children":null,"spread":false},{"title":"sealevel_data.csv <span style='color:#111;'> 537B </span>","children":null,"spread":false},{"title":"co2_ppm.csv <span style='color:#111;'> 364B </span>","children":null,"spread":false},{"title":"temp_data.csv <span style='color:#111;'> 993B </span>","children":null,"spread":false},{"title":"population_data.csv <span style='color:#111;'> 507B </span>","children":null,"spread":false},{"title":"combinedclimatedata_prophet.csv <span style='color:#111;'> 2.14KB </span>","children":null,"spread":false},{"title":"climate-change-earth-surface-temperature-data.zip <span style='color:#111;'> 84.73MB </span>","children":null,"spread":false},{"title":"co-emissions-per-capita.csv <span style='color:#111;'> 483.38KB </span>","children":null,"spread":false},{"title":"GlobalTemperatures.csv <span style='color:#111;'> 197.93KB </span>","children":null,"spread":false},{"title":"combinedclimatedata.csv <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"rm_outliers_sealevel_1993-2020.csv <span style='color:#111;'> 10.30KB </span>","children":null,"spread":false},{"title":"temp_data-AllYears.csv <span style='color:#111;'> 6.69KB </span>","children":null,"spread":false},{"title":"GMSL_merged_nasa_1993_2020.csv <span style='color:#111;'> 17.40KB </span>","children":null,"spread":false},{"title":"daily-sea-ice-extent-data.zip <span style='color:#111;'> 233.49KB </span>","children":null,"spread":false},{"title":"WPP2019_POP_F01_1_TOTAL_POPULATION_BOTH_SEXES.xlsx <span style='color:#111;'> 2.41MB </span>","children":null,"spread":false},{"title":"Electric_Cars_By_Year_US.xlsx <span style='color:#111;'> 20.25KB </span>","children":null,"spread":false},{"title":"WORLD_POP.xlsx <span style='color:#111;'> 2.41MB </span>","children":null,"spread":false}],"spread":false},{"title":"sealevel_scrub.ipynb <span style='color:#111;'> 53.13KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明