music时延估计
2024-06-24 11:39:37 2KB
1
一、目的: 熟悉银行家算法,加深死锁有关概念的理解。 二、内容: 编制银行家算法通用程序,并检测思考题中所给状态的安全性。 三、要求: (1) 下列状态是否安全?(三个进程共享12个同类资源) 进程 已分配资源数 最大需求数 1 1 4 (状态a) 2 4 4 3 5 8 1 1 4 2 4 6 (状态b) 3 6 8 (2) 考虑下列系统状态 分配矩阵 最大需求矩阵 可用资源矩阵 0 0 1 2 0 0 1 2 1 5 2 0 1 0 0 0 1 7 5 0 1 3 5 4 2 3 5 6 0 6 3 2 0 6 5 2 0 0 1 4 0 6 5 6 问系统是否安全?若安全就
2024-06-24 11:31:26 260KB 操作系统 编程语言
1
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真模型及运行结果
2024-06-24 10:39:02 1.57MB matlab
1
内容包括: 传统RSA实现: 1、ZIntMath:大整数的运算库,包括计算乘模运算,幂模运算(蒙哥马利算法),最大公约数算法及扩展最大公约数算法(扩展欧几里得算法)等。 2、ZPrime:质数库,包括 Miller_Rabin素数判断法,大整数快速因式分解算法(pollard_rho算法),生成指定位数的大质数或大整数算法等。 3、ZRSA: RSA算法库,使用上面两个库,实现RSA算法。实现了生成指定数位的密钥对,加密,解密,签名和验证,这5个核心功能。 4、RSAtest.py一个使用RSA算法库的例子。例子从生成密钥对开始,对数据进行加解密,签名和验证签名,最后用修改后的消息再次验证签名。 改进RSA算法实现: 5、IRSA:改进的RSA算法库,实现了基于多素数的指定数位的密钥对,RSA加密,RSA解密,基于中国剩余定理的RSA解密,签名,验签。 6、IRSAtest.py 使用改进RSA算法库的例子。
2024-06-23 10:13:18 30KB rsa
1
问题背景: 假期到了,你打算制定一个假期旅行计划,连续游玩若干个城市,假设旅行中的交通成本与城市间的旅行距离成正比。同时,你需要携带一定的出游物品,这些物品有不同的体积和重要度,但是你的行李箱有一定的容量限制。为了使你的旅行更加愉快,你希望:  选择最佳的旅游路线,使得总旅行中的交通成本最低。  选择最佳的物品,使得在满足背包容量限制的情况下,重要度最大。 问题 1:旅游路线优化 任务描述:  设定若干个旅游城市(至少 10 个),并给出每个城市位置坐标。  建立旅行商问题(TSP)的数学模型,目标是找到一条路径,每个城市只访问一次,最终回到起点城市,并且使得总旅行交通成本最低。  采用遗传算法,使用 MATLAB 编程实现 TSP 的求解。 给出结果分析。 具体要求:  描述 TSP 的背景和重要性。  提供目标旅游城市的坐标位置,和单位距离的旅行交通成本,并解释数据来源(可以是虚拟数据,言之成理即可),以坐标值计算城市间的平面直线距离作为旅行距离。  建立 TSP 的数学模型,包括目标函数和约束条件。  编写 MATLAB 代码求解 TSP 问题(要求附上主要代
2024-06-22 23:07:51 1KB matlab TSP算法
1
算法导论 黑皮书 期末复习笔记
2024-06-22 14:58:57 72.65MB
1
原文链接:https://qihongtao.blog.csdn.net/article/details/134978662?spm=1001.2014.3001.5502 sm2+openssl.zip 使用C++实现的openssl调用sm2实现文件签名的功能。 C++源代代码可以直接使用。也上传了openssl1.1.1的头文件、lib文件和dll文件。 因为国产化原因,项目中需要使用国标sm2签名算法对文件进行签名和验签。OpenSSL 1.1.1版本提供了对国密SM2算法的支持,在之前的版本openssl不支持。 关注公众号 QTShared,后台私信留言免费获取。
2024-06-22 14:42:19 7.64MB openssl 国密算法
基于MapReduce实现决策树算法的知识点 基于MapReduce实现决策树算法是一种使用MapReduce框架来实现决策树算法的方法。在这个方法中,主要使用Mapper和Reducer来实现决策树算法的计算。下面是基于MapReduce实现决策树算法的知识点: 1. 基于C45决策树算法的Mapper实现:在Mapper中,主要实现了对输入数据的处理和预处理工作,包括对输入数据的tokenize、attribute extraction和data filtering等。同时,Mapper还需要实现对决策树算法的初始化工作,例如对树的节点进行初始化和对属性的初始化等。 2. 基于MapReduce的决策树算法实现:在Reducer中,主要实现了决策树算法的计算工作,包括对树的构建、决策树的分裂和叶节点的计算等。Reducer需要对Mapper输出的结果进行处理和计算,以生成最终的决策树模型。 3. MapReduce框架在决策树算法中的应用:MapReduce框架可以对大规模数据进行并行处理,使得决策树算法的计算速度和效率大大提高。在基于MapReduce实现决策树算法中,MapReduce框架可以对输入数据进行分区和处理,使得决策树算法的计算可以并行进行。 4. 决策树算法在MapReduce中的优化:在基于MapReduce实现决策树算法中,需要对决策树算法进行优化,以提高计算速度和效率。例如,可以对决策树算法的计算过程进行并行化,对Mapper和Reducer的计算过程进行优化等。 5. 基于MapReduce的决策树算法的应用:基于MapReduce实现决策树算法可以应用于数据挖掘、机器学习和推荐系统等领域,例如可以用于用户行为分析、推荐系统和风险评估等。 6. 决策树算法在MapReduce中的实现细节:在基于MapReduce实现决策树算法中,需要对决策树算法的实现细节进行详细的设计和实现,例如对树的节点进行实现、对决策树的分裂和叶节点的计算等。 7. MapReduce框架在决策树算法中的限制:基于MapReduce实现决策树算法也存在一些限制,例如对输入数据的规模和复杂度的限制,对决策树算法的计算速度和效率的限制等。 8. 基于MapReduce实现决策树算法的优点:基于MapReduce实现决策树算法的优点包括高效的计算速度、可扩展性强、灵活性强等,可以满足大规模数据的处理和计算需求。 9. 基于MapReduce实现决策树算法的缺点:基于MapReduce实现决策树算法的缺点包括对输入数据的限制、对决策树算法的计算速度和效率的限制等。 10. 基于MapReduce实现决策树算法的应用前景:基于MapReduce实现决策树算法的应用前景包括数据挖掘、机器学习、推荐系统等领域,可以满足大规模数据的处理和计算需求。
2024-06-22 02:37:14 57KB MapReduce 决策树算法
1
【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。
1
基于MapReduce实现物品协同过滤算法(ItemCF)
2024-06-22 01:03:58 147KB mapreduce
1