KBQA-BERT 基于知识图谱的问答系统,BERT做命名实体识别和句子相似度 介绍 本项目主要由两个重要的点组成,一是基于BERT的命名实体识别,二是基于BERT的句子相似度计算,本项目将这两个模块进行融合,构建基于BERT的KBQA问答系统。详细介绍,请看我的博客: : 环境配置 Python版本为3.6 pytorch版本为1.1.0 windows10 数据在Data中,更多的数据在[**NLPCC2016**](http://tcci.ccf.org.cn/conference/2016/pages/page05_evadata.html) 和 [**NLPCC2017**](http://tcci.ccf.org.cn/conference/2017/taskdata.php)。 目录说明 Input/data/文件夹存放原始数据和处理好的数据 1-sp
2021-09-05 10:15:31 13.07MB 系统开源
1
运行该项目的模型训练和模型预测脚本需要准备BERT中文版的模型数据,下载网址为: 。   利用笔者自己收集的3881个样本,对人物关系抽取进行尝试。人物关系共分为14类,如下: { "unknown": 0, "夫妻": 1, "父母": 2, "兄弟姐妹": 3, "上下级": 4, "师生": 5, "好友": 6, "同学": 7, "合作": 8, "同人": 9, "情侣": 10, "祖孙": 11, "同门": 12, "亲戚": 13 }   人物关系类别频数分布条形图如下:   模型结构: BERT + 双向GRU + Attention + FC   模型训练效果: # 训练集(train), loss: 0.0260, acc: 0.9941 # 最终测试集(test), loss: 0.9505, acc:
2021-09-03 20:56:57 690KB Python
1
PyTorch的BERT中文文本分类 此存储库包含用于中文文本分类的预训练BERT模型的PyTorch实现。 代码结构 在项目的根目录,您将看到: ├── pybert | └── callback | | └── lrscheduler.py   | | └── trainingmonitor.py  | | └── ... | └── config | | └── base.py #a configuration file for storing model parameters | └── dataset    | └── io     | | └── be
2021-08-27 20:50:35 46KB nlp text-classification pytorch chinese
1
PyTorch的Bert多标签文本分类 此仓库包含用于多标签文本分类的预训练BERT和XLNET模型的PyTorch实现。 代码结构 在项目的根目录,您将看到: ├── pybert | └── callback | | └── lrscheduler.py   | | └── trainingmonitor.py  | | └── ... | └── config | | └── basic_config.py #a configuration file for storing model parameters | └── dataset    | └── io
2021-08-27 20:41:49 154KB nlp text-classification transformers pytorch
1
深入学习机器学习算法的学习文档
2021-08-27 19:14:44 230.47MB 机器学习
1
加入Bert、CRF和对比学习的SlotFilling.zip
2021-08-27 18:07:12 187KB 自然语言处理
1
伯特相似度 基于Google的BERT模型来进行语义相似度计算。代码基于tensorflow 1。 1.基本原理 简单来说就是将需要需要计算的相似性的两个句子先分解在一起,然后通过伯特模型获取获取整体的编码信息,然后通过全连接层将维,输出相似和不相似的概率。 1.1模型结构 模型结构所示如下: 1.1.1数据预处理 本文使用Bert模型计算相似度前,首先要对输入数据进行预处理,例如当要处理的文本是: 如何得知关闭借呗 想永久关闭借呗 首先进行文本按token化,切成分割的文字排列: [如 何 得 知 关 闭 借 呗] [想 永 久 关 闭 借 呗] 然后将两个切分后的句子,按照如下的方式
2021-08-24 18:33:00 2.82MB python nlp semantic tensorflow
1
An auto-regressive model that captures bidirectional context
2021-08-24 12:35:19 3.06MB BERT
1
MacBERT:重新审视中文自然语言处理的预训练模型(EMNLP的发现)
2021-08-23 22:55:02 128KB nlp tensorflow language-model bert
1
bert模型句子向量化
2021-08-23 13:04:54 463.66MB bert
1