内容概要:通过数据集电力变压器油温数据详细的介绍双向LSTM,以及其机制,运行原理,以及如何横向搭配单向的LSTM进行回归问题的解决。 所需数据:在本次的模型所需的数据是电力变压器油温数据,由国家电网提供,该数据集是来自中国同一个省的两个不同县的变压器数据,时间跨度为2年,原始数据每分钟记录一次(用 m 标记),每个数据集包含2年 * 365天 * 24小时 * 60分钟 = 1,051,200数据点。 每个数据点均包含8维特征,包括数据点记录日期,预测目标值OT(oil temperature)和6个不同类型功率负载特征。 适合人群:时间序列和深度学习初学者本文的模型比较简单,易于理解。 阅读建议:可以大致阅读以下,本文件只是一个简单实现版本,并不复杂。 能学到什么:能够从本文件当中读懂深度学习的代码实现过程,对于时间序列有一个简单的了解, (PS:如果你使用你自己的数据进行预测需要将时间列和官方数据集保持一致,因为在数据处理部分我添加了一部分特征工程操作,提取了一些时间信息,因为LSTM不支持时间格式的数据输入,需要转化为数字) 如果大家不懂的地方可以看我的文章部分有详细的讲解。
2024-01-31 13:39:26 441KB lstm python pytorch 深度学习
1
基于深度学习的文本摘要自动生成(自然语言处理)-本科毕业设计,详细代码,过程可见博客
1
AI深度学习文档
2024-01-25 00:22:02 30.39MB DeepLearning
1
基于深度学习的OpenPose识别人体骨架点的python源代码。先解压文件,打开pycharm直接就可以运行,运行demo.py,不需要安装环境,所有配置文件都在压缩包里!建议直接根据此文件进行修改,配置openpose环境较为复杂!
2024-01-24 05:06:01 825.44MB 深度学习 python
1
本文通过实战案例讲解TPA-LSTM实现多元时间序列预测,在本文中所提到的TPA和LSTM分别是注意力机制和深度学习模型,通过将其结合到一起实现时间序列的预测,本文利用有关油温的数据集来进行训练模型,同时将模型保存到本地,进行加载实现多步长预测,本文所利用的数据集也可以替换成你个人的数据集来进行预测(修改个人的数据集的地方本文也进行了标注),同时本文会对TPA和LSTM分别进行概念的讲解帮助大家理解其中的运行机制原理(包括个人总结已经论文内容)。TPA(Temporal Pattern Attention)注意力机制是一种用于处理时间序列数据的注意力机制。它的工作原理是在传统的注意力机制的基础上引入了时间模式的概念,以更好地捕捉时间序列中的重要模式和特征。LSTM(长短期记忆,Long Short-Term Memory)是一种用于处理序列数据的深度学习模型,属于循环神经网络(RNN)的一种变体,其使用一种类似于搭桥术结构的RNN单元。相对于普通的RNN,LSTM引入了门控机制,能够更有效地处理长期依赖和短期记忆问题,是RNN网络中最常使用的Cell之一。配合我的博客大家可以实现预测。
2024-01-21 09:53:02 2.04MB LSTM 深度学习 人工智能 时间序列预测
1
人工智能深度学习,语音克隆项目 Bert-vits2项目,目前效果最完美的开源TTS项目 版本号:2.3 文件包括,模型本体G_6000.pth 配置文件config.json 天童爱丽丝语音模型,语言:日语,训练步数:6000 语气韵律完美,抑扬顿挫,语笑嫣然,自然流畅,适合作为小说阅读、口播、口替等功能领域。 请勿用于非法用途,也不得用作商业领域。
2024-01-18 16:52:56 576.78MB 深度学习 bert
1
基于Pytorch实现GRU模型
2024-01-18 16:17:36 321KB pytorch 深度学习
1
python汽车类型识别源代码带图形界面,基于torch深度学习,目前可识别公交车, 货车,客运车, 面包车, 皮卡车, 小轿车,程序包中已含模型文件
2024-01-15 09:53:23 42.23MB 深度学习
pytorch深度学习图片风格迁移项目源码+资料,代码注解非常详细,适合新手学习。
2024-01-13 16:13:43 8.35MB pytorch pytorch 深度学习
1
总结ppt,里面有两种机器学习或深度学习入门需掌握的算法(包括),有比较详细的个人学习理解(看吴恩达视频学习的)和算法描述。还有几篇关于显著性的论文的部分内容,及其评价措施。
2024-01-12 17:44:26 4.94MB 深度学习 神经网络 支持向量机
1