为了提高混合连接的混合预编码的频谱效率,首先利用连续干扰消除(SIC)的原理得到理想条件下的最优混合预编码矩阵,然后利用梯度下降理论将最优混合预编码矩阵分解为数字预编码矩阵和模拟预编码矩阵,最后考虑模拟预编码矩阵的恒模约束条件,并以最大化频谱效率为目标利用交替最小化方法优化模拟和数字预编码矩阵。所提出的混合预编码设计算法基于混合连接结构,因而能量效率远优于部分连接的和全连接的混合预编码。同时,该算法不会增加混合连接的混合预编码的硬件复杂度且只少量增加计算量。仿真结果表明,该算法能提升混合连接的混合预编码的频谱效率,特别是当射频(RF)链路数大于数据流数时,频谱效率的提升更加显著。由于分块不需要满足正交性,该算法比现有混合连接的混合预编码更适合实际应用。
1
此demo中的三个按钮会跟随窗体的变化而改变位置,实现界面来回切换
2021-04-26 21:17:00 4KB Qt 源码 自定义按钮
1
WPF实现的最小化程序到托盘中,初学者适用
2021-04-23 15:41:52 92KB WPF 托盘 最小化 源代码
1
Extracting Article Text from the Web with Maximum Subsequence Segmentation 论文 MMS算法。
1
WNNM_CVPR2014-加权核规范最小化在图像去噪中的应用的matlab源码
2021-04-21 19:17:40 58KB WNNM matlab 降噪 规范最小化
1
提出了一种基于低秩矩阵逼近(LRMA)和加权核范数最小化(WNNM)正则化的去噪算法,以消除磁共振图像的Rician噪声。 该技术将来自嘈杂的3D MR数据的相似的非局部立方块简单地分组到一个补丁矩阵中,每个块按字典顺序矢量化为一列,计算该矩阵的奇异值分解(SVD),然后是LRMA的闭式解通过用不同的阈值硬阈值不同的奇异值来实现。 去噪块是从低秩矩阵的此估计中获得的,整个无噪声MR数据的最终估计是通过聚合所有彼此重叠的去噪示例块来建立的。 为了进一步提高WNNM算法的去噪性能,我们首先在两次迭代的正则化框架中实现了上述去噪过程,然后利用基于单像素补丁的简单非局部均值(NLM)滤波器来降低WNNM算法的去噪强度。均匀面积。 所提出的降噪算法与相关的最新技术进行了比较,并在合成和真实3D MR数据上产生了非常有竞争力的结果。
2021-04-21 14:57:16 1.87MB Non-local similarity; Low-rank matrix
1
为解决加权核范数最小化(WNNM)图像去噪无法较好地表达复杂和不规则的图像结构,易产生过平滑现象的问题,将相对全变差(RTV)融入加权核范数最小化,对WNNM低秩表示模型施加RTV范数约束,提出一种RTV-WNNM图像去噪模型,采取交替方向乘子(ADMM)算法迭代求解对应模型,获得清晰图像。将提出的新方法与多种基于低秩矩阵近似的去噪算法进行比较,所提算法在保持图像边缘和加强区域平滑性方面有较好的性能,特别是在高密度图像噪声影响下,算法性能也能得到大幅提升。实验结果表明,加入RTV范数的低秩去噪模型具有良好的恢复图像结构能力,能较好地提高去噪性能。
2021-04-19 17:13:33 7.39MB 图像处理 加权核范 图像去噪 低秩矩阵
1
4个氨基酸组成的蛋白质,每个氨基酸只取-N-CA-C-,势能函数只考虑兰纳琼斯势,用模拟退火算法求最小值,输出原子坐标和最小能量。
2021-04-17 14:21:39 1KB 模拟退火 蛋白质 能量最小化 matlab
1
实现OUTLOOK点击关闭按钮变为最小化
2021-04-14 14:01:06 29KB OUTLOOK
1
屏蔽关闭、最大化、最小化按钮VB6.0源代码.rar