上传者: 38604620
|
上传时间: 2021-04-21 14:57:16
|
文件大小: 1.87MB
|
文件类型: PDF
提出了一种基于低秩矩阵逼近(LRMA)和加权核范数最小化(WNNM)正则化的去噪算法,以消除磁共振图像的Rician噪声。 该技术将来自嘈杂的3D MR数据的相似的非局部立方块简单地分组到一个补丁矩阵中,每个块按字典顺序矢量化为一列,计算该矩阵的奇异值分解(SVD),然后是LRMA的闭式解通过用不同的阈值硬阈值不同的奇异值来实现。 去噪块是从低秩矩阵的此估计中获得的,整个无噪声MR数据的最终估计是通过聚合所有彼此重叠的去噪示例块来建立的。 为了进一步提高WNNM算法的去噪性能,我们首先在两次迭代的正则化框架中实现了上述去噪过程,然后利用基于单像素补丁的简单非局部均值(NLM)滤波器来降低WNNM算法的去噪强度。均匀面积。 所提出的降噪算法与相关的最新技术进行了比较,并在合成和真实3D MR数据上产生了非常有竞争力的结果。