风力发电预测
这是根据我的硕士论文进行的一项实验,其主要重点是比较应用于时间序列问题的不同深度学习策略。 这项研究仅集中在循环和卷积体系结构上。
数据
数据由RedesEnergéticasNacionais(REN)收集,并基于葡萄牙电力系统中注入的风力。 从2010年第一天到2016年最后一天,它以15分钟的分辨率进行了采样。所收集的数据适用于与REN遥测系统相连的所有风电场。 数据在data文件夹下。
客观的
主要任务是对产生的风力进行预测。 将要预测三个视野。 一小时,六小时和24小时,这意味着在提前一小时的预测中将预测4分(15、30、45和60分钟)。
演算法
测试了以下体系结构列表:
RNN架构[RNN + GRU + LSTM单元]
扩张式递归架构
编码器-解码器体系结构
编码器-解码器+注意系统体系结构
准RNN
Wavenet
TCN
有关模型的详细说明,请检查链接
2021-07-16 11:18:39
1.86MB
Python
1