时间序列预测调查 该项目的目的是使用新颖的机器学习方法改进对时间序列的预测,并将其向前推进几步,以便更好地预测异常值,例如资产负债表上的异常。 安装 将此存储库克隆或下载到您的计算机。 安装Jupyter Lab( pip install jupyterlab )。 cd到存储库的目录。 使用以下命令启动Jupyter Lab: jupyter lab 。 笔记本可以在Jupyter Lab窗口中打开并运行。 所需的数据很轻,因此已经包含在此存储库中。
2024-03-29 17:34:11 9.59MB JupyterNotebook
1
最大相关和最小冗余算法mRMR特征选择,mRMR分类预测,多变量输入模型。 在特征选择过程中,有一种算法叫做mRMR(Max-Relevance and Min-Redundancy)。其原理非常简单,就是在原始特征集合中找到与最终输出结果相关性最大(Max-Relevance),但是特征彼此之间相关性最小的一组特征(Min-Redundancy)。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图
2024-03-29 17:32:02 74KB
1
别人当初花600块让我给写的马尔可夫预测代码,步骤详细,包教包会,你只要看完一遍,基本上就会加权马尔可夫预测了。
2024-03-27 21:14:58 913KB
1
BP神经网络时间序列预测MATLAB源代码(BP时序预测MATLAB) 1、直接替换数据即可使用,不需要理解代码 2、代码注释详细,可供学习 3、可设置延时步长 4、自动计算最佳隐含层神经元节点数量 5、作图精细,图像结果齐全 6、各误差结果指标齐全,自动计算误差平方和SSE、平均绝对误差MAE、均方误差MSE、均方根误差RMSE、平均绝对百分比误差MAPE、预测准确率、相关系数R等指标,结果种类丰富齐全 7、Excel数据集导入,直接把数据替换到Excel即可 8、可自动随意设置测试集数量 9、注释了结果在工作区
2024-03-26 11:03:33 30KB matlab 神经网络 编程语言
1
清华大学遗传算法PPT课件,英文版,遗传算法应用于通信领域。
2024-03-25 17:19:29 16.08MB 遗传算法
1
【探索人工智能的宝藏之地】 无论您是计算机相关专业的在校学生、老师,还是企业界的探索者,这个项目都是为您量身打造的。无论您是初入此领域的小白,还是寻求更高层次进阶的资深人士,这里都有您需要的宝藏。不仅如此,它还可以作为毕设项目、课程设计、作业、甚至项目初期的立项演示。 【人工智能的深度探索】 人工智能——模拟人类智能的技术和理论,使其在计算机上展现出类似人类的思考、判断、决策、学习和交流能力。这不仅是一门技术,更是一种前沿的科学探索。 【实战项目与源码分享】 我们深入探讨了深度学习的基本原理、神经网络的应用、自然语言处理、语言模型、文本分类、信息检索等领域。更有深度学习、机器学习、自然语言处理和计算机视觉的实战项目源码,助您从理论走向实践,如果您已有一定基础,您可以基于这些源码进行修改和扩展,实现更多功能。 【期待与您同行】 我们真诚地邀请您下载并使用这些资源,与我们一起在人工智能的海洋中航行。同时,我们也期待与您的沟通交流,共同学习,共同进步。让我们在这个充满挑战和机遇的领域中共同探索未来!
2024-03-24 23:03:38 161.43MB 毕业设计 课程设计 项目开发 实训作业
首先基于特征融合思想,采用氨基酸组成、熵密度和自相关系数结合的方式构建 190 维特征向量进行特.征表达,与仅考虑氨基酸组成信息的传统方法相比,能更好地表达蛋白质结构信息。然后利用 LDA(Linear .Discriminant Analysis)方法进行降维,降低计算复杂性,加强同类样本间的相关性。接下来选用支持向量机作为.分类器进行定位预测,最后采用留一法在 Gram-negative 和 Gram-positive 数据集上进行交叉检验。实验结果表明,.多特征结合的方法优于传统的氨基酸组成方法和简单的自相关系数方法,证明了新方法的有效性。
2024-03-23 08:48:32 414KB
1
为了解决现有的堆石料非线性本构模型参数估计方法预测精度低问题,提出了基于遗传算法的材料非线性本构模型参数反演方法.采用Duncan-Chang非线性本构模型描述堆石料的应力-应变特性.建立了堆石料三轴压缩实验轴向应变与垂直载荷关系的近似解析计算方法.根据实验室堆石料三轴压缩实验观测数据,反演得到了堆石料的本构模型参数.研究结果表明:与现有的参数估计方法相对比,新方法预测的应变值与实验观测值具有较高的拟合精度.
2024-03-22 23:23:31 815KB 行业研究
1
提高风出力预测精度的储能系统模糊控制策略,阿丽努尔.阿木提,晁勤,风气象信息精细化程度不够造成风电场风出力预测精度低,导致电网调度困难问题,从而易造成电力系统失稳。本文提出在风电场中配置
2024-03-22 15:19:15 438KB 首发论文
1
钢冶炼数据处理与成分预测 这是一个pytorch深度学习项目,可识别炼钢的数据处理和组件预测。 钢冶炼中生产数据处理与成分预测的火炬深度学习项目 安装 下载部分数据文件'SteelmakingData' 冶炼数据转炉操作数据表下载: 转炉数据: 放置在: (用户文件夹)/SteelmakingData # 用户文件夹 在 Windows下是'C:\Users\(用户名)',在Linux下是 '/home/(用户名)' 安装Pytorch和其他依赖: # Python 3.8.5 conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch conda install ujson pip install visdom opencv-python imgaug scikit-learn joblib 参数
2024-03-21 08:40:41 15.61MB Python
1