time-series-prediction:研究预测时间序列和检测离群值的新颖方法

上传者: 42134117 | 上传时间: 2024-03-29 17:34:11 | 文件大小: 9.59MB | 文件类型: ZIP
时间序列预测调查 该项目的目的是使用新颖的机器学习方法改进对时间序列的预测,并将其向前推进几步,以便更好地预测异常值,例如资产负债表上的异常。 安装 将此存储库克隆或下载到您的计算机。 安装Jupyter Lab( pip install jupyterlab )。 cd到存储库的目录。 使用以下命令启动Jupyter Lab: jupyter lab 。 笔记本可以在Jupyter Lab窗口中打开并运行。 所需的数据很轻,因此已经包含在此存储库中。

文件下载

资源详情

[{"title":"( 21 个子文件 9.59MB ) time-series-prediction:研究预测时间序列和检测离群值的新颖方法","children":[{"title":"time-series-prediction-master","children":[{"title":".ipynb_checkpoints","children":[{"title":"LSTM-hyperparameter-tuning-checkpoint.ipynb <span style='color:#111;'> 189.69KB </span>","children":null,"spread":false},{"title":"LSTM-time-series-train-predict-checkpoint.ipynb <span style='color:#111;'> 1.30MB </span>","children":null,"spread":false}],"spread":true},{"title":"datasets","children":[{"title":"test_examples","children":[{"title":"restaurant-stores","children":[{"title":"restaurant-visits-test.csv <span style='color:#111;'> 18.43KB </span>","children":null,"spread":false}],"spread":true},{"title":"wikipedia-pages","children":[{"title":"ru-wikipedia_series(Ломоносов).csv <span style='color:#111;'> 9.30KB </span>","children":null,"spread":false},{"title":"en-wikipedia_series(Ellen_DeGeneres).csv <span style='color:#111;'> 9.81KB </span>","children":null,"spread":false},{"title":"de-wikipedia_series(Rubinrot).csv <span style='color:#111;'> 9.06KB </span>","children":null,"spread":false},{"title":"fr-wikipedia_series(Crue_de_la_Seine).csv <span style='color:#111;'> 8.60KB </span>","children":null,"spread":false},{"title":"zh-wikipedia_series(蕭正楠).csv <span style='color:#111;'> 9.00KB </span>","children":null,"spread":false},{"title":"jp-wikipedia_series(メジャー_(アニメ)).csv <span style='color:#111;'> 9.55KB </span>","children":null,"spread":false}],"spread":true},{"title":"supermarket-items","children":[{"title":"supermarket-sales_test.csv <span style='color:#111;'> 1.98MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"supermarket-sales_train.csv <span style='color:#111;'> 9.19MB </span>","children":null,"spread":false},{"title":"wikipedia-views_train.csv <span style='color:#111;'> 3.04MB </span>","children":null,"spread":false},{"title":"restaurant-visits_train.csv <span style='color:#111;'> 223.42KB </span>","children":null,"spread":false}],"spread":true},{"title":"models","children":[{"title":"XGB-model_lag=10_lead=3.pkl <span style='color:#111;'> 333.42KB </span>","children":null,"spread":false},{"title":"XGB-model_lag=10_lead=1.pkl <span style='color:#111;'> 5.91MB </span>","children":null,"spread":false},{"title":"XGB-model_lag=10_lead=5.pkl <span style='color:#111;'> 334.54KB </span>","children":null,"spread":false}],"spread":true},{"title":"XGB-time-series-prediction.ipynb <span style='color:#111;'> 634.68KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 649B </span>","children":null,"spread":false},{"title":"LSTM-time-series-train-predict.ipynb <span style='color:#111;'> 1.30MB </span>","children":null,"spread":false},{"title":"XGB-time-series-prediction.py <span style='color:#111;'> 7.84KB </span>","children":null,"spread":false},{"title":"LSTM-hyperparameter-tuning.ipynb <span style='color:#111;'> 189.69KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明