空间数据基本方法,基于python3.9,方法包括空间结构距离,长度,边界,轮廓点,行点,线组面,交叉类型,平面方程,投影点坐标计算,截取线段点等方法,适用于空间算法人群
2022-04-15 13:08:41 7KB 空间算法 shape字段解析
1
说明:本文档所有内容来源于网络 https://www.numpy.org.cn/user/ 目录 1. NUMPY 介绍 1 1.1 什么是 NUMPY? 1 1.2 为什么 NUMPY 这么快? 3 1.3 还有谁在使用 NUMPY? 3 2. 快速入门教程 4 2.1 先决条件 4 2.2 基础知识 4 2.2.1一个例子 5 2.2.2 数组创建 6 2.2.3 打印数组 8 2.2.4 基本操作 10 2.2.5 通函数 13 2.2.6 索引、切片和迭代 14 2.3 形状操纵 18 2.3.1改变数组的形状 18 2.3.2 将不同数组堆叠在一起 20 2.3.3 将一个数组拆分成几个较小的数组 22 2.4 拷贝和视图 23 2.4.1 完全不复制 23 2.4.2 视图或浅拷贝 24 2.4.3 深拷贝 25 2.4.4 功能和方法概述 26 2.5 LESS 基础 26 广播(Broadcasting)规则 27 2.6 花式索引和索引技巧 27 2.6.1使用索引数组进行索引 27 2.6.2使用布尔数组进行索引 31 2.6.3 ix_()函数 34 2.6.4使用字符串建立索引 37 2.7线性代数 37 简单数组操作 37 2.8技巧和提示 38 2.8.1“自动”整形 39 2.8.2矢量堆叠 39 2.8.3直方图 40 2.9进一步阅读 41 3. NUMPY 基础知识 42 3.1 数据类型 42 3.1.1 数组类型之间的转换 42 3.1.2 数组标量 45 3.1.3 溢出错误 46 3.1.4 扩展精度 47 3.2 创建数组 47 3.2.1 简介 48 3.2.2 将Python array_like对象转换为Numpy数组 48 3.2.3 Numpy原生数组的创建 48 3.2.4 从磁盘读取数组 50 3.3 NUMPY与输入输出 51 3.3.1 定义输入 51 3.3.2 将行拆分为列 52 3.3.3 跳过直线并选择列 54 3.3.4 选择数据的类型 55 3.3.5 设置名称 56 3.3.6 调整转换 59 3.3.7 快捷方式函数 62 3.4 索引 62 3.4.1 赋值与引用 63 3.4.2 单个元素索引 63 3.4.3 其他索引选项 64 3.4.4 索引数组 65 3.4.5 索引多维数组 66 3.4.6 布尔或“掩码”索引数组 67 3.4.7 将索引数组与切片组合 69 3.4.8 结构索引工具 70 3.4.9 为索引数组赋值 71 3.4.10 在程序中处理可变数量的索引 72 3.5 广播 73 3.6 字节交换 78 3.6.1字节排序和ndarrays简介 78 3.6.2 更改字节顺序 80 3.7 结构化数组 82 3.7.1 介绍 82 3.7.2 结构化数据类型 83 3.7.3 索引和分配给结构化数组 88 3.7.4 记录数组 96 3.7.5 Recarray Helper 函数 98 3.8编写自定义数组容器 116 3.9子类化NDARRAY 124 3.9.1 介绍 124 3.9.2 视图投影 125 3.9.3 从模板创建 126 3.9.4 视图投影与从模板创建的关系 126 3.9.5 子类化的含义 126 3.9.6 简单示例 —— 向ndarray添加额外属性 132 3.9.7 稍微更现实的例子 —— 添加到现有数组的属性 134 3.9.8 __array_ufunc__ 对于ufuncs 135 3.9.9 __array_wrap__用于ufuncs和其他函数 139 3.9.10 额外的坑 —— 自定义的 __del__ 方法和 ndarray.base 142 3.9.11 子类和下游兼容性 143 4. 其他杂项 144 4.1 IEEE 754 浮点特殊值 144 4.2 NUMPY 如何处理数字异常的 146 4.3 示例 146 4.4 连接到 C 的方式 147 4.4.1 不借助任何工具, 手动打包你的C语言代码。 147 4.4.2 Cython 148 4.4.3 ctypes 148 4.4.4 SWIG(自动包装发生器) 149 4.4.5 scipy.weave 149 4.4.6 Psyco 149 5. 与MATLAB比较 149 5.1 介绍 150 5.2 一些关键的差异 150 5.3 'ARRAY'或'MATRIX'?我应该使用哪个? 151 5.3.1 简答 151 5.3.2 长答案 151 5.4 MATLAB 和 NUMPY粗略的功能对应表 153 5.4.1 一般功能的对应表 153 5.4.2 线性代数功能对应表 154 5.5 备注 161 5.6 自定义您的环境 163 5.7 链接 164 6. 从源代码构建 164 6.1 先决条件 164 6.2 基本安装 164 6.3 测试 165 并行构建 165 6.4 FORTRAN ABI不匹配 165 6.4.1 选择fortran编译器 166 6.4.2 如何检查BLAS / LAPACK /地图集ABI 166 6.5 加速BLAS / LAPACK库 166 6.5.1 BLAS 166 6.5.2 LAPACK 167 6.5.3 禁用ATLAS和其他加速库 167 6.6 提供额外的编译器标志 168 6.7 使用ATLAS支持构建 168 7. 使用NUMPY的C-API 168 7.1 如何扩展NUMPY 168 7.1.1 编写扩展模板 169 7.1.2 必需的子程序 169 7.1.3 定义函数 171 7.1.4 处理数组对象 175 7.1.5 示例 180 7.2 使用PYTHON作为胶水 182 7.2.1 从Python调用其他编译库 183 7.2.2 手工生成的包装器 183 7.2.3 f2py 184 7.2.4 用Cython 191 7.2.5 ctypes 196 7.2.6 您可能会觉得有用的其他工具 206 7.3 编写自己的UFUNC 208 7.3.1 创建一个新的ufunc 208 7.3.2 示例非ufunc扩展名 209 7.3.3 一种dtype的NumPy ufunc示例 215 7.3.4 示例具有多个dtypes的NumPy ufunc 221 7.3.5 示例具有多个参数/返回值的NumPy ufunc 230 7.3.6 示例带有结构化数组dtype参数的NumPy ufunc 235 7.4 深入的知识 241 7.4.1 迭代数组中的元素 242 7.4.2 用户定义的数据类型 246 7.4.3 在C中对ndarray进行子类型化 249
2022-04-11 09:18:32 2.57MB Python Numpy 用户指南 帮助文档
1
数据分析的流程
2022-04-08 16:40:45 12.05MB python
1
开发环境:Pycharm 2018.3 + Anaconda3(5.3.0) + Python 3.7.1 + Numpy 1.15.4 在此环境下,我打算使用numpy模块的zeros方法创建一个空的二维List,却屡屡报错 Traceback (most recent call last): File “D:\Anaconda3\lib\site-packages\numpy\core\__init__.py”, line 16, in from . import multiarray ImportError: DLL load failed: 找不到指定的模块。
2022-04-08 01:06:45 101KB mp
1
该资源为机器学习科学计算库(1)Matplotlib、Numpy、Pandas及拓展的详细讲解,包括理论和实践案例。环境安装配置等也详细说明了。
2022-04-06 19:06:31 19.32MB 机器学习 人工智能 python
Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。这篇文章主要介绍了Python numpy 常用函数总结,需要的朋友可以参考下
2022-04-05 11:49:15 55KB python numpy 常用函数 numpy
1
Python(+numpy)实现对9*9数独问题的求解 利用Python(+numpy库)递归实现对9*9数独问题的求解 (=== 分享一下这两天断断续续写的解9*9数独问题的经历及源码,第一次写博客,很多功能不太会用,也会有很多不到位的地方,谢大家指正!===) # 整活 百度 wd=世界最难数独 输入方式及运行结果,运行时间(完全遍历结束,时间戳分别在递归函数前后)为0.88秒的亚子(膨胀) # 以下正文 回顾一下 数独(Sudoku) 无论是4*4还是9*9的数独游戏规则很简单很粗暴,拿9*9数独来说,规则可概括为 9组 1-9 共 81个数字(包含已给出的数字)填入 9*9 的方格
2022-04-04 19:22:14 326KB mp num numpy
1
直接上代码了 x = np.empty(shape=[0, 4], int) x = np.append(x, [[1,2,3,4]], axis = 0) x = np.append(x, [[1,2,3,4]], axis = 0) 这样就添加了两行4列的数据了。注意append里面是两层括号,这个非常重要,如果漏掉了就不是二维数组了,用axis的时候就会报维度不匹配。 以上这篇numpy向空的二维数组中添加元素的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持软件开发网。 您可能感兴趣的文章:Python的多维
2022-04-03 19:01:40 30KB axis mp num
1
今天小编就为大家分享一篇Python 获取numpy.array索引值的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2022-04-03 18:14:24 30KB Python numpy array 索引值
1
Game of Life 基于numpy的relu30及康威生命游戏(Conway’s Game of Life) Conway’s Game of Life 支持循环或零填充边界的生命游戏 支持冷却检测 支持循环边界下团块的检出和重新放置 relu30
2022-04-03 09:57:41 542KB JupyterNotebook
1