提出了一种基于余弦相似度的点云配准(PCR-CS)算法,该算法主要解决点云刚性配准问题,即找到点云配准的旋转矩阵R和平移矩阵T,从而实现原始点云P到目标点云Q的配准。先对两个待配准点云进行去中心化处理,再进行点云余弦相似度的研究,将两个待配准的三维点云分别投影到XY平面上,对XY平面上的点云进行栅格化处理,统计栅格上的数据点从而形成统计矩阵SP和SQ,采用差分进化算法,以两点云余弦相似度为条件,寻求最优R,从而实现点云配准,最后,利用中心点计算T。实验结果表明,与其他算法相比,该算法具有较高的配准精度,即使在点云数据伴随有噪声和数据缺失的情况下,也都能达到良好的配准效果。
2021-11-09 14:33:15 3.99MB 机器视觉 点云 余弦相似 差分进化
1
文本聚类 文本聚类的一种实现,使用 k-means 进行聚类,并使用作为距离度量。 等等,什么? 基本上,如果您有一堆文本文档,并且您想按相似性将它们分成 n 个组,那么您很幸运。 例子 为了测试这一点,我们可以查看test_clustering.py : from vectorizer import cluster_paragraphs from random import shuffle text1 = """Type theory is closely related to (and in some cases overlaps with) type systems, which are a programming language feature used to reduce bugs. The types of type theory were created to avo
2021-11-08 17:54:02 9KB Python
1
用二进码检测文件相似度,BinDiff是一个二进制文件比较工具,协助漏洞的研究人员和工程师迅速找到反汇编代码的差异和相似之处。
2021-11-08 16:19:46 212KB 文件检测
1
感知相似性指标和数据集 深度特征作为感知指标的不合理有效性( ,( ,( ,( ,( 。 在 ,2018中。 快速开始 运行pip install lpips 。 下面的Python代码就是您所需要的。 import lpips loss_fn_alex = lpips . LPIPS ( net = 'alex' ) # best forward scores loss_fn_vgg = lpips . LPIPS ( net = 'vgg' ) # closer to "traditional" perceptual loss, when used for optimizat
1
Img2VecCosSim-Django-Pytorch 提取任何图像的特征向量,并找到余弦相似度以使用Pytorch进行比较。 我已经使用ResNet-18提取图像的特征向量。 最后,开发了一个Django应用程序来输入两个图像并找到余弦相似度。 包装方式: 火炬 Django 2.0 学分: 灵感来自 如何开始: 克隆存储库 git clone https://github.com/MexsonFernandes/Img2VecCosSim-Django-Pytorch 变更目录 cd Img2VecCosSim-Django-Pytorch 安装虚拟环境 pipenv install 安装所有依赖项 pipenv install -r requirements.txt或pip install -r requirements.txt 启动Django服务器 python
2021-11-05 19:59:29 4.55MB python django pytorch cosine-similarity
1
自己开发的Excel函数,可以判定两个字符串的相似度
2021-11-05 15:54:38 37KB Excel 函数 自定义
1
主要介绍了JAVA实现基于皮尔逊相关系数的相似度详解,具有一定参考价值,需要的朋友可以了解下。
1
图像相似度PSNR和SSIM,图像处理的同学可以参考
2021-11-04 13:09:38 3KB matlab
1
1.采用经典的vsm模型实现的文本相似度计算。 2.采用中科院ictclas的开源分词系统 3.包含全部实现源码
2021-11-03 18:05:46 19.89MB 文本相似vsm vsm相似度算法 pythonvsm文件
1
基于Pytorch的中文语义相似度匹配模型 基于Pytorch的中文语义相似度匹配模型 本项目将持续更新,对比目前业界主流文本匹配模型在中文的效果 运行环境:python3.7,pytorch1.2,transformers2.5.1 数据集采用LCQMC数据(将一个句子对进行分类,判断两个句子的语义是否相同(二分类任务)),因数据存在涉嫌嫌疑,故不提供下载,需要者可向官方提出数据申请 ,将数据解压到数据文件夹即可。模型评价指标为:ACC,AUC以及预测总计耗时。 嵌入:本项目输入都统一采用分字策略,故通过维基百科中文语料,训练了字向量作为嵌入。训练语料,矢量模型以及词表,可通过百度网盘下载。链接: : 提取码:s830 模型文件:本项目训练的模型文件(不一定最优,可通过超参继续调优),也可通过网盘下载。链接: : 提取码:s830 测试集结果对比: 模型 行政协调会 AUC 耗时(s
2021-11-03 12:47:32 126KB Python
1