### SAE J1939-21 数据链路层详解 #### 一、概述 SAE J1939-21标准是SAE International(原美国汽车工程师学会)制定的一系列关于车载网络通信的标准之一,特别是针对数据链路层部分进行了详细规定。这一标准不仅适用于卡车和客车,也广泛应用于建筑机械、农业机械以及固定式动力系统等领域。通过制定统一的数据链路层规范,SAE J1939-21旨在提高不同品牌车辆和设备之间的互操作性,促进整个行业的标准化进程。 #### 二、SAE J1939-21的主要内容 ##### (一)目标 SAE J1939-21的主要目标是在数据链路层层面为SAE J1939网络提供全面而具体的指导。这一标准利用CAN(Controller Area Network)网络协议的29位标识符格式来定义数据链路层,确保所有SAE J1939网络采用一致的数据链路层实现方式,从而实现系统的兼容性和可扩展性。 ##### (二)消息/帧格式 SAE J1939-21对消息/帧格式有着明确的规定,包括: - **SAE J1939消息帧格式**:“CAN2.0B”扩展帧格式用于所有SAE J1939的消息帧。这种格式允许使用29位标识符,为消息提供了更大的地址空间。 - **参数群编号(PGN)**:用于标识特定类型的消息。PGN值的不同可以区分不同的消息类型和内容。 - **“CAN2.0B”标准帧格式消息的支持**:虽然主要采用扩展帧格式,但SAE J1939-21也对标准帧格式提供了一定程度的支持,以便与现有系统进行兼容。 ##### (三)协议数据单元(PDU) PDU是构成消息的基本单位,包括: - **优先级(P)**:用于确定消息在总线上的传输优先级。 - **保留位(R)**:在当前版本中未被使用,保留以备未来扩展之用。 - **数据页(DP)**:用于区分PDU1和PDU2格式,其中PDU1格式通常用于单帧传输,而PDU2格式则用于多帧传输。 - **PDU格式(PF)**:进一步细化PDU的具体类型。 - **特定PDU(PS)**:包含目标地址和群扩展等信息,用于特定目的的PDU。 - **源地址(SA)**:发送消息的节点的地址。 - **数据域**:携带实际数据的字段,根据数据大小的不同,分为多种格式。 ##### (四)消息类型 SAE J1939-21定义了不同类型的消息,如: - **命令**:由主机发送,指示某个ECU执行特定动作。 - **请求**:请求某个ECU发送特定的信息。 - **广播/响应**:用于无目标地址的广播或对请求的响应。 - **确认**:用于确认消息的接收情况。 - **群功能**:涉及一组ECU的功能协调。 ##### (五)传输协议功能 为了实现复杂的数据交换需求,SAE J1939-21还规定了一系列传输协议功能,例如: - **消息拆装和重组**:对于超过单帧容量的数据,采用多帧传输的方式,并在接收端进行重组。 - **连接管理**:定义了建立和断开连接的过程,以支持更高效的数据交换。 - **传输协议连接管理消息**:用于管理和控制连接的各种消息类型。 ##### (六)PDU处理条件 SAE J1939-21还规定了处理PDU所需的条件,包括: - 必须遵循的规则,如数据更新速率、响应时间等。 - 对特定情况下的行为要求,如对指定目标地址或全局目标地址的响应。 #### 三、总结 SAE J1939-21标准在数据链路层层面为车载网络通信提供了详尽的技术指导和支持,通过统一的消息/帧格式、协议数据单元(PDU)格式、消息类型以及传输协议功能等规定,确保了不同设备之间的高效通信和兼容性。这对于推动汽车行业以及其他相关领域的技术进步和标准化发展具有重要意义。随着技术的不断进步,SAE J1939-21也会不断地更新和完善,以适应新的应用场景和技术挑战。
2025-11-05 10:23:43 418KB 1939
1
内容概要:本文详细介绍了如何在COMSOL中进行手性介质的电磁仿真。首先,文章讲解了手性介质的特殊本构关系及其在COMSOL中的具体实现方式,包括自定义材料参数、修改内置方程以及验证模型正确性的方法。接着,文章深入探讨了如何通过调整手性参数κ来研究不同条件下的电磁特性,并提供了多个实用技巧,如参数化扫描、后处理脚本编写等。此外,还讨论了一些常见的错误及解决方案,帮助用户避免常见陷阱并提高仿真效率。 适合人群:从事电磁场仿真工作的科研人员和技术工程师,尤其是对复杂介质(如手性介质)感兴趣的用户。 使用场景及目标:①掌握手性介质在COMSOL中的建模方法;②理解手性介质的电磁特性及其在不同参数下的表现;③学会利用COMSOL的各种工具和功能优化仿真流程。 其他说明:文中提供的实例和技巧不仅有助于初学者快速入门,也为经验丰富的用户提供深入了解的机会。同时,强调了物理理解和数值实现之间的平衡,确保仿真结果的准确性。
2025-11-05 10:06:47 207KB
1
"利用Comsol进行手性介质计算的特殊本构关系:内置表达式推导与优化方法",Comsol计算手性介质。 特殊本构关系构建,内置表达式的推导与修改。 ,Comsol计算;手性介质;特殊本构关系构建;内置表达式推导与修改;,Comsol计算手性介质特殊本构关系与表达式推导 在当前科学技术的迅猛发展下,计算手性介质的研究已成为光学、电磁学和材料科学等领域中的一个重要分支。手性介质是指具有光学活性的介质,它能够影响电磁波的传播特性,进而对光束的传播路径、偏振状态等产生特定的调控效果。在这一背景下,Comsol作为一种强大的多物理场模拟软件,已被广泛应用于手性介质相关问题的数值计算与模拟。 本构关系是描述物质内部物理状态与外部物理量之间关系的数学模型。在手性介质的计算中,特殊本构关系的构建对于准确模拟介质与电磁波相互作用至关重要。这些关系通常涉及复杂的数学推导和物理参数的设置,需要对材料科学、电磁学等领域的深入理解。 本文档详细介绍了如何在Comsol软件环境中构建和优化手性介质的特殊本构关系。文档中不仅包含了对内置表达式的推导过程,还探讨了对这些表达式进行修改和优化的方法。这些表达式通常包括了用于描述手性介质电磁特性的复数折射率、旋光系数等参数。通过调整这些参数,研究者可以更精确地模拟手性介质在不同条件下的行为,从而为新材料的设计、光波导的优化等应用提供理论指导。 文档内容涉及的手性介质特殊本构关系构建包括对Comsol内置函数的深入理解,以及如何根据手性介质的物理特性对其进行修改和自定义。此外,文档还探讨了在模拟过程中优化计算精度和效率的方法,比如网格划分的策略、时间步长的选取等。通过对这些计算参数的优化,可以有效提升模拟结果的可靠性并降低计算成本。 文档还提供了一系列实践案例,用以展示如何应用Comsol软件进行手性介质的模拟分析。这些案例不仅涵盖了基本的手性介质参数设置,还包括了如何在特定的研究背景下,如光波导设计、手性光子晶体的应用等,将特殊本构关系应用于实际问题。通过这些案例,研究者可以更直观地理解理论与实践之间的联系,以及如何利用Comsol软件解决复杂问题。 本文档为手性介质的计算提供了一套完整的理论框架和实操指南。通过对Comsol软件内置表达式的深入探讨和优化方法的介绍,本文档能够帮助相关领域的研究者和工程师更有效地进行手性介质的模拟与分析,推动该领域科研与应用的发展。
2025-11-05 10:01:41 660KB
1
COMSOL模拟手性超材料模型:分析左右旋圆偏振下的吸收、反射与透射率(参数调整与文献趋势一致),COMSOL模拟手性超材料模型:探究圆偏振光下的吸收、反射、透射特性(与文献参数比对,趋势相符),COMSOL手性超材料文献模拟模型 计算左右旋圆偏振下的吸收、反射、透射率(材料参数未与文献一致 趋势吻合) ,关键词:COMSOL手性超材料;文献模拟模型;左右旋圆偏振;吸收;反射;透射率;趋势吻合。,COMSOL模拟手性超材料:圆偏振光下的光学性能分析(参数趋势吻合) 在材料科学与光学领域中,手性超材料作为一类特殊的材料,因其独特的电磁性能和在光波调控方面的应用潜力而备受关注。随着计算模拟技术的进步,COMSOL Multiphysics作为一种强大的数值分析软件,被广泛应用于手性超材料的模拟与研究中。通过模拟分析,研究人员能够深入了解手性超材料在左右旋圆偏振光下的吸收、反射与透射特性,并与现有文献中的实验数据进行比较。 在进行COMSOL模拟时,研究者首先需建立精确的计算模型,确保模型中的参数设置与实际手性超材料的物理属性相吻合。为了验证模拟结果的准确性,研究者会参考相关文献中的实验参数进行调整,并对模拟结果的趋势进行比对。通过这种方式,可以确保模拟数据与实验数据在宏观趋势上的一致性,提高模拟结果的可信度。 模拟分析中,手性超材料在圆偏振光下的光学性能是重点研究内容。具体来说,研究人员会对手性超材料的吸收率、反射率和透射率进行详细的计算与分析。在左右旋圆偏振的入射光作用下,手性超材料的电磁响应特性可能表现出明显的差异性,这与材料内部的旋光性质直接相关。通过深入研究,可以揭示手性超材料对不同圆偏振光的调控能力,为设计新型光学器件提供理论依据。 此外,模拟分析还需考虑手性超材料的结构设计与材料选择,不同的结构参数和材料组分会影响材料的光学特性。因此,在模拟过程中,参数的调整是实现与实验数据趋势吻合的关键步骤。通过不断优化模型参数,研究者能够更加准确地预测手性超材料的光学行为,并为实验设计提供指导。 值得注意的是,手性超材料的研究不仅仅局限于单一的性能分析。在实际应用中,手性超材料可能会与其他类型的材料或结构组合使用,形成复合材料系统。因此,模拟研究还需考虑这种复合材料系统中的协同效应,以及在不同环境条件下的性能稳定性。 COMSOL模拟手性超材料模型的研究,为深入理解手性超材料在圆偏振光下的光学性能提供了重要的手段。通过对比模拟与文献数据,不仅可以验证模型的准确性,还能为未来的设计和应用开辟新的途径。随着技术的不断发展,我们有理由相信,手性超材料将在光学、电磁波调控以及其他高科技领域发挥更加重要的作用。
2025-11-05 10:01:06 363KB kind
1
内容概要:本文介绍了使用COMSOL软件模拟手性超材料在左右旋圆偏振光照射下的吸收、反射和透射率。通过建立3D模型并设定材料参数,作者探讨了不同条件下手性超材料的光学特性。虽然材料参数与文献不完全一致,但模拟结果展示了相似的趋势,揭示了手性超材料的独特电磁响应和光学行为。文中详细描述了模型构建、仿真过程及结果分析,强调了多层材料间相互作用的重要性,并对未来研究方向提出了展望。 适合人群:从事光学材料研究的专业人士,尤其是对超材料及其电磁特性和光学特性感兴趣的科研工作者。 使用场景及目标:适用于希望深入了解手性超材料光学特性的研究人员,旨在帮助他们掌握COMSOL模拟方法,以便更好地设计和优化超材料结构。 阅读建议:读者可以重点关注模型构建的具体步骤和参数选择依据,以及仿真过程中遇到的问题和解决方案。同时,结合实际实验数据对比模拟结果,进一步验证模型的有效性和可靠性。
2025-11-05 09:59:16 227KB
1
Qt OpenCV图像视觉框架集成全套上位机源码库:多相机多线程支持,模块自定义扩展与灵活算法实现,Qt OpenCV图像视觉框架:全套源码,工具可扩展,多相机多线程支持,模块化设计,Qt+OpenCV图像视觉框架全套源码上位机源码 工具可扩展。 除了opencv和相机sdk的dll,其它所有算法均无封装,可以根据自己需要补充自己的工具。 基于 Qt5.14.2 + VS2019 + OpenCV 开发实现,支持多相机多线程,每个工具都是单独的 DLL,主程序通过公用的接口访问以及加载各个工具。 包含涉及图像算法的工具、 逻辑工具、通讯工具和系统工具等工具。 ,Qt; OpenCV; 图像视觉框架; 源码; 上位机源码; 扩展性; 多相机多线程; DLL; 接口访问; 逻辑工具; 通讯工具; 系统工具。,Qt与OpenCV图像视觉框架:多相机多线程上位机源码全解析
2025-11-05 09:55:35 3.84MB ajax
1
# 基于Python的高熵材料性质计算系统 ## 项目简介 本项目是一个基于Python语言开发的高熵材料性质计算系统。该系统通过读取用户提供的YAML格式输入文件,计算并输出高熵材料的构型熵、混合焓、混合吉布斯自由能等物理参数。该系统适用于研究高熵材料性能的研究人员。 ## 主要特性和功能 1. 多组分高熵材料计算用户可通过YAML格式输入文件设定材料参数,支持多组分材料计算。 2. 物理参数计算可计算构型熵、混合焓、混合吉布斯自由能等物理参数。 3. 多种晶格类型支持支持立方、正交、六角等多种晶格类型的输入和计算。 4. 结果输出计算结果可通过CSV文件输出,便于后续分析和处理。 ## 安装和使用步骤 ### 安装步骤 2. 安装Python环境确保已安装Python 3环境。 3. 安装依赖库确保已安装numpy、scipy、os、yaml等Python库,可通过以下命令安装 bash
2025-11-05 09:55:22 4.43MB
1
英飞凌TLE987X与TLE9879无感电机FOC(场向量控制)控制方案的技术特点及其在实际生产中的应用。首先概述了FOC控制相对于传统V/F控制的优势,如高精度、高效率和低噪音。接着分别阐述了单电阻和双电阻检测方案的工作原理和适用场景,前者结构简单、成本低,后者精度更高、稳定性更强。最后强调了该控制方案已在电子水泵、油泵、风机等产品中成功应用,并具备高产量、高品质、灵活性和易于集成等特点。 适合人群:从事电机控制系统设计、开发和生产的工程师和技术人员。 使用场景及目标:帮助工程师和技术人员深入了解英飞凌TLE987X与TLE9879无感电机FOC控制方案的具体实现方式,以便于将其应用于实际项目中,提高产品质量和性能。 其他说明:本文不仅涵盖了理论知识,还提供了具体的量产案例,有助于读者全面掌握相关技术和实践经验。
2025-11-05 09:51:07 453KB 电机控制 工业自动化
1
### 基于FPGA的多通道雷达接收机幅相不一致校正 #### 引言 在现代雷达系统中,为了提高系统的整体性能及精确度,越来越多地采用了多通道体制。这种体制能够通过多个独立的接收通道同时采集数据,从而实现更高级别的信号处理功能。然而,在实际应用中,由于各个接收机前端处理器件特性的差异以及信号传输过程中的损耗,导致不同接收通道间的信号幅度和相位出现不一致现象。这种幅相不一致不仅影响雷达的测角精度,还可能降低系统的整体性能。因此,对多通道雷达接收机的幅相不一致进行校正是至关重要的。 #### 幅相不一致的原因及影响 幅相不一致通常是由以下几个因素造成的: 1. **前端处理器件的差异**:不同通道中使用的放大器、滤波器等器件可能存在微小的参数差异。 2. **信号传输路径差异**:不同的信号传输路径会导致信号到达时间的不同,从而引起相位差。 3. **温度变化**:温度的变化会影响器件的性能,进而影响信号的幅相特性。 幅相不一致对雷达系统的影响主要体现在以下几个方面: 1. **测角精度下降**:相位误差会直接影响雷达的方向估计能力。 2. **抗干扰能力减弱**:幅度不一致可能导致某些通道的信号被抑制,降低了系统的整体抗干扰能力。 3. **系统稳定性问题**:长期运行下,幅相不一致可能导致系统不稳定。 #### 基于FPGA的校正方法 针对多通道雷达接收机幅相不一致的问题,本文提出了一种基于FPGA(Field Programmable Gate Array,现场可编程门阵列)的校正方法。该方法的核心在于利用FPGA的灵活性和高速处理能力来实现高效的幅相校正。 - **校正原理**:该方法首先在每个通道的前端输入标准信号,通过对这些信号的测试来获取各通道之间的幅相差异。接下来,采用一种试探计算补偿值的方法,即通过逐步调整补偿值直至满足预设的幅相一致性要求。 - **实现步骤**: 1. **测试信号输入**:在每个接收通道的前端输入相同的标准测试信号。 2. **数据采集与分析**:利用FPGA采集各通道的输出信号,并进行数据处理,计算出各通道之间的幅相差异。 3. **补偿值计算**:根据幅相差异,采用试探计算的方法确定补偿所需的频响特性。 4. **校正实施**:将计算得到的补偿值输入到后端校正器中,实现对信号的幅相校正。 - **优势特点**: 1. **高效性**:由于FPGA具有并行处理能力,因此可以在很短的时间内完成复杂的校正计算。 2. **灵活性**:FPGA可以根据需要进行重新编程,使得校正算法可以随着硬件平台的更新而不断优化。 3. **低延迟**:该方法实现的校正电路作为附加的功能模块,不会对原有的接收机结构造成大的改动,因此附加的延迟非常小。 #### 实验结果与分析 经过实验验证,基于FPGA的校正方法能够显著改善多通道雷达接收机的幅相一致性。具体来说,在工作频率为170MHz时,该方法可以在7.42μs内完成校正过程,且附加延迟不超过0.04μs。校正后的结果表明,不同通道间的信号相位误差可以减小至0.17°以下,幅度误差则可以减小至0.004dB以下。 #### 结论 本文介绍了一种基于FPGA的多通道雷达接收机幅相不一致校正方法。该方法通过在前端输入标准信号并采用试探计算的方式确定补偿值,最终实现了对信号的幅相校正。实验结果显示,这种方法能够有效提高雷达接收机的幅相一致性,对于提高雷达系统的整体性能具有重要意义。未来的研究方向可以进一步探索如何在更宽的工作频段内实现高精度的幅相校正,以及如何将该方法应用于更加复杂的多通道雷达系统中。
2025-11-05 09:26:30 410KB 于FPGA的多通道雷达接收机
1
百威的全系列写锁+注册工具。
2025-11-05 09:23:03 1.67MB
1