在强化学习领域,期末考试的题目通常覆盖了该领域的重要概念和方法。根据提供的文件内容,我们可以提炼出以下知识点:
知识点一:折扣因子(Discount Factor)
在网格世界中,折扣因子γ用于决定未来奖励的当前价值。γ的取值范围在0到1之间。一个折扣因子γ=0.9意味着未来的奖励比当前奖励的价值要低。
知识点二:状态转移和奖励(State Transitions and Rewards)
在强化学习中,状态转移是指当采取特定动作时,智能体从一个状态转移到另一个状态的概率。奖励则是在状态转移过程中得到的即时反馈。例如,在网格世界中,从状态s1向右转移至状态s2时,奖励为1。
知识点三:贝尔曼方程(Bellman Equation)
贝尔曼方程用于描述强化学习中的最优策略和最优价值函数。它是递归的,并且可以用来更新状态价值函数。对于给定的网格世界,各个状态的贝尔曼方程可以用来计算每个状态的期望累积奖励。
知识点四:蒙特卡洛方法(Monte Carlo Methods)
蒙特卡洛方法是一种在强化学习中使用随机采样来估计状态值或动作值的算法。由于它依赖完整的回报轨迹,因此属于离线算法,即需等待回合结束才能更新状态值。
知识点五:时间差分方法(Temporal Difference, TD)
时间差分方法是一种结合动态规划和蒙特卡洛方法优点的算法。TD方法使用估计的状态值进行逐步更新,属于在线算法,即可以实时学习和更新状态值,无需等待整个回合结束。
知识点六:SARSA算法和Q-learning算法
SARSA算法是on-policy方法,即学习和更新过程都基于当前所用策略。它使用当前策略选择的下一个行动的Q值进行更新。而Q-learning算法是off-policy方法,学习和更新过程可以独立于当前所用策略,它使用下一个状态所有可能行动的最大Q值进行更新。
知识点七:值迭代(Value Iteration)与策略迭代(Policy Iteration)
值迭代是通过迭代更新状态价值函数来逼近最优价值函数,每一步都更新为最大动作价值。策略迭代则包括策略评估和策略改进两个主要步骤,通过评估和改进策略来实现最优决策。
知识点八:马尔科夫决策过程(Markov Decision Process, MDP)
MDP是强化学习的基础概念,包括状态集合、动作集合、转移概率、奖励函数和折扣因子。MDP用来描述智能体在环境中进行决策的随机过程。
知识点九:状态-行动值函数(Action-Value Function)
状态-行动值函数表示给定状态和动作下,未来期望奖励的评估。Q函数可以用来选择最佳行动并学习策略。
知识点十:学习率(Learning Rate)
学习率α是控制学习过程中参数更新程度的一个超参数。在强化学习中,学习率决定了新信息覆盖旧信息的快慢。
以上知识点涉及了强化学习的诸多核心概念和算法,这些知识对于理解强化学习的工作原理和实现有效的学习策略至关重要。
2025-06-12 22:25:05
332KB
1