1.版本:matlab2014/2019a/2021a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信 %% 开发者:Matlab科研助手 %% 更多咨询关注天天Matlab微信公众号 ### 团队长期从事下列领域算法的研究和改进: ### 1 智能优化算法及应用 **1.1 改进智能优化算法方面(单目标和多目标)** **1.2 生产调度方面** 1.2.1 装配线调度研究 1.2.2 车间调度研究 1.2.3 生产线平衡研究 1.2.4 水库梯度调度研究 **1.3 路径规划方面** 1.3.1 旅行商问题研究(TSP、TSPTW) 1.3.2 各类车辆路径规划问题研究(vrp、VRPTW、CVRP) 1.3.3 机器人路径规划问题研究 1.3.4 无人机三维路径规划问题研究 1.3.5 多式联运问题研究 1.3.6 无人机结合车辆路径配送 **1.4 三维装箱求解** **1.5 物流选址研究** 1.5.1 背包问题 1.5.2 物流选址 1.5.4 货位优化 ##### 1.6 电力系统优化研究 1.6.1 微电网优化 1.6.2 配电网系统优化 1.6.3 配电网重构 1.6.4 有序充电 1.6.5 储能双层优化调度 1.6.6 储能优化配置 ### 2 神经网络回归预测、时序预测、分类清单 **2.1 bp预测和分类** **2.2 lssvm预测和分类** **2.3 svm预测和分类** **2.4 cnn预测和分类** ##### 2.5 ELM预测和分类 ##### 2.6 KELM预测和分类 **2.7 ELMAN预测和分类** ##### 2.8 LSTM预测和分类 **2.9 RBF预测和分类** ##### 2.10 DBN预测和分类 ##### 2.11 FNN预测 ##### 2.12 DELM预测和分类 ##### 2.13 BIlstm预测和分类 ##### 2.14 宽度学习预测和分类 ##### 2.15 模糊小波神经网络预测和分类 ##### 2.16 GRU预测和分类 ### 3 图像处理算法 **3.1 图像识别** 3.1.1 车牌、交通标志识别(新能源、国内外、复杂环境下车牌) 3.1.2 发票、身份证、银行卡识别 3.1.3 人脸类别和表情识别 3.1.4 打靶识别 3.1.5 字符识别(字母、数字、手写体、汉字、验证码) 3.1.6 病灶识别 3.1.7 花朵、药材、水果蔬菜识别 3.1.8 指纹、手势、虹膜识别 3.1.9 路面状态和裂缝识别 3.1.10 行为识别 3.1.11 万用表和表盘识别 3.1.12 人民币识别 3.1.13 答题卡识别 **3.2 图像分割** **3.3 图像检测** 3.3.1 显著性检测 3.3.2 缺陷检测 3.3.3 疲劳检测 3.3.4 病害检测 3.3.5 火灾检测 3.3.6 行人检测 3.3.7 水果分级 **3.4 图像隐藏** **3.5 图像去噪** **3.6 图像融合** **3.7 图像配准** **3.8 图像增强** **3.9 图像压缩** ##### 3.10 图像重建 ### 4 信号处理算法 **4.1 信号识别** **4.2 信号检测** **4.3 信号嵌入和提取** **4.4 信号去噪** ##### 4.5 故障诊断 ##### 4.6 脑电信号 ##### 4.7 心电信号 ##### 4.8 肌电信号 ### 5 元胞自动机仿真 **5.1 模拟交通流** **5.2 模拟人群疏散** **5.3 模拟病毒扩散** **5.4 模拟晶体生长** ### 6 无线传感器网络 ##### 6.1 无线传感器定位 ##### 6.2 无线传感器覆盖优化 ##### 6.3 室内定位 ##### 6.4 无线传感器通信及优化 ##### 6.5 无人机通信中继优化 #####
2024-08-19 16:57:32 25.24MB matlab
1
在图像处理领域,预测编码是一种常见的数据压缩技术,主要用于减少图像数据中的冗余信息,以达到高效存储和传输的目的。本资源"图像处理的预测编码源代码"是基于Matlab实现的一个实例,非常适合初学者理解和掌握预测编码的基本原理。 Matlab是一种强大的数值计算和可视化工具,特别适合进行图像处理和信号处理相关的实验与开发。在这个压缩包中,包含了一个名为"eye"的文件,这通常指的是Matlab的内置函数`eye()`生成的单位矩阵。在图像处理的上下文中,单位矩阵可能被用作基础参照,用于构建预测模型。 预测编码的核心思想是利用当前像素值与其相邻像素值的关系来进行预测,预测误差则被编码和存储。误差通常使用无损或有损编码方法,如行程编码、霍夫曼编码或熵编码等。在Matlab中,可以通过自定义函数或者内置的图像处理工具箱来实现这些操作。 预测编码主要包括线性预测编码(LPC)、差分脉冲编码调制(DPCM)和自适应差分脉冲编码调制(ADPCM)等方法。线性预测编码通过建立像素值的线性预测模型,然后编码预测误差;DPCM则是根据前一时刻的预测误差来预测当前时刻的误差;ADPCM则进一步引入了自适应算法,使预测系数随时间自适应调整,提高预测精度。 在Matlab中实现预测编码,一般会涉及以下步骤: 1. 读取图像:使用`imread()`函数读取图像数据。 2. 预处理:可能需要将图像转换为灰度,使用`rgb2gray()`函数。 3. 预测:根据预测模型(如前一像素、平均值或线性组合)计算当前像素的预测值。 4. 计算误差:得到当前像素实际值与预测值的差,即误差。 5. 量化:将误差转换为有限数量的离散级别,可使用`quantize()`函数。 6. 编码:对量化后的误差进行编码,可以选择不同的编码方法。 7. 存储:将编码后的结果保存到文件。 8. 解码和重构:在接收端解码并反量化误差,再结合预测值重构图像。 通过分析和理解这个"eye"文件,你可以了解到如何在Matlab中搭建预测编码的框架,以及如何利用单位矩阵作为基础进行预测。对于进一步的学习,可以尝试对其他图像应用这些代码,或者修改预测模型和编码策略,以探索其对压缩效果的影响。 预测编码是图像压缩技术的重要组成部分,Matlab提供的强大工具和丰富的库函数使其成为学习和实践这一技术的理想平台。通过深入研究这个源代码,你不仅可以掌握预测编码的基本原理,还能提升Matlab编程技能,为后续的图像处理和信号处理项目打下坚实的基础。
2024-08-19 15:47:43 6KB Matlab
1
【NSGA II多目标精华算法matlab程序实现】 NSGA II(非支配排序遗传算法第二代)是一种在多目标优化领域广泛应用的算法,由Deb等人于2000年提出。它通过模拟自然选择和遗传进化过程来寻找帕累托前沿的解,即在多个目标之间找到一组最优的折衷解。MATLAB作为一种强大的数值计算和可视化工具,是实现NSGA II的理想平台。 **算法流程** 1. **初始化种群**:随机生成初始种群,每个个体代表一个潜在的解决方案。 2. **适应度评估**:对每个个体计算其在所有目标函数下的表现,通常使用非支配等级和拥挤距离作为适应度指标。 3. **选择操作**:使用选择策略(如锦标赛选择、轮盘赌选择等)保留部分个体进入下一代。 4. **交叉操作**(基因重组):随机选取两个父代个体,通过交叉策略(如单点、双点或均匀交叉)生成子代。 5. **变异操作**:在子代中引入随机变异,增加种群多样性。 6. **精英保留**:将上一代中的非支配解保留到下一代,确保帕累托前沿的连续性。 7. **重复步骤2-6**,直到满足停止条件(如达到最大迭代次数或满足性能指标)。 **MATLAB程序结构** 1. **NSGA_II_Abril.m**:这是主程序文件,负责调用各个子函数,执行NSGA II的主要流程。 2. **test_case.m**:可能包含特定问题的测试用例,用于验证算法的正确性和性能。 3. **NDS_CD_cons.m**:非支配排序和拥挤距离计算模块,这部分是评估个体适应度的关键。 4. **tour_selection.m**:选择操作的实现,例如使用“锦标赛选择”。 5. **TestProblemBounds.m**:定义问题的边界条件,确保生成的个体满足问题域的约束。 6. **genetic_operator.m**:基因操作模块,包括交叉和变异操作的实现。 7. **Problem.m**:问题定义,包括目标函数和约束的声明。 8. **NSGA_II_Abril_Test.m**:可能是一个测试函数,用于运行NSGA II并分析结果。 9. **replacement.m**:替换策略的实现,决定哪些个体将进入下一代。 **重要知识点** 1. **非支配排序**:根据个体在所有目标上的表现将其分为多个非支配层,第一层是最优的,随后的层次依次次优。 2. **拥挤距离**:用于处理相同非支配级别的个体,距离越大表示个体在帕累托前沿的分布越稀疏。 3. **遗传操作**:包括交叉和变异,是算法产生新解的主要方式。 4. **多目标优化**:NSGA II解决的问题通常涉及多个相互冲突的目标,寻找一组均衡的解而非单一最优解。 5. **MATLAB编程技巧**:如何高效地使用MATLAB进行大规模计算和数据处理,以及绘制帕累托前沿。 6. **停止条件**:算法何时停止运行,通常基于迭代次数、性能指标或时间限制。 理解并熟练掌握这些知识点,你就能有效地利用MATLAB实现NSGA II算法,解决实际的多目标优化问题。在实际应用中,可能还需要考虑如何调整参数以优化算法性能,以及如何解析和解释结果。
2024-08-19 11:29:16 537KB NSGAII matlab
1
IGBT升压斩波电路MATLAB仿真
2024-08-19 11:26:11 50KB matlab
1
Matlab中的Simulink和SimMechanics在机器人技术中的应用】 Matlab是一个强大的数学软件,广泛应用于工程计算和数据分析。其中,Simulink是一个图形化的建模环境,用于模拟和分析动态系统,而SimMechanics是专门针对机械系统建模和仿真的扩展工具。对于机器人技术来说,这两个工具的结合提供了强大的设计、分析和测试能力。 SimMechanics的核心在于它无需编程就能构建多刚体机械系统模型。用户可以通过拖放刚体、铰链、约束和外力元素来构建模型,这些元素可以是3D几何结构,也可以是从CAD系统直接导入的。模型的可视化通过自动化3D动画得以实现,使用户能够直观地观察机械系统的运动状态。 SimMechanics支持的功能包括: 1. **三维刚体建模**:用户可以创建具有质量、惯性和3D几何结构的实体,这些实体通过铰链和约束连接,形成复杂的机械系统。 2. **非线性仿真技术**:SimMechanics可以处理非线性弹性单元,如通过Simulink查表模块和SimMechanics传感器及作动器来定义的。此外,还包括空气动力学拖曳模块,用于模拟飞行器的气动效应。 3. **系统集成**:SimMechanics与Simulink的紧密集成允许用户将控制系统与机械系统模型相结合,进行联合仿真和优化。 4. **CAD接口**:SimMechanics Link工具提供了与Pro/ENGINEER和SolidWorks等CAD软件的接口,可以直接导入CAD模型的相关数据,同时也支持API函数与其他CAD平台交互。 5. **C代码生成**:通过Real-Time Workshop,SimMechanics模型可以自动转换为C代码,便于硬件在回路仿真和嵌入式控制器的测试。 6. **机械系统分析**:SimMechanics可以进行正向动力学分析(根据输入求解系统响应)和逆向动力学分析(求解所需的输入以获得特定响应)。此外,还可以进行初始状态计算、离散事件检测和传感器信号的监测。 7. **动画展示**:通过Virtual Reality Toolbox或MATLAB图形,可以创建逼真的机械系统动画,显示系统运动的实时状态。 在机器人技术中,Simulink和SimMechanics的组合特别适用于: - **机器人臂的设计与控制**:可以模拟机器人的运动学和动力学,测试不同的控制策略。 - **机器人行走机构仿真**:如足式机器人的步态规划和稳定性分析。 - **手术机器人系统**:评估其精确度和安全性。 - **无人驾驶车辆**:建模悬挂系统,防侧翻机制,以及车辆与路面的交互。 通过这些工具,工程师可以在物理原型制作前就进行大量的迭代和优化,显著降低了研发成本和风险。同时,它们也为企业提供了从概念验证到实际部署的完整解决方案,推动了机器人技术的发展。
2024-08-18 22:07:37 848KB 机器人
1
AM信号调制,仿真调制信号,载波信号,DSB调制信号
2024-08-18 17:41:36 345B 信号调制 AM调制 matlab仿真
1
在图像处理领域,车牌识别是一项重要的技术,广泛应用于交通监控、智能停车场等系统。MATLAB作为一款强大的数学计算和数据分析工具,提供了丰富的图像处理函数,使得实现车牌识别变得相对简单。本项目是基于MATLAB的车牌识别系统,特别针对蓝色车牌进行设计。下面将详细介绍其中的关键技术和步骤。 1. 图像预处理: 预处理是任何图像识别系统的基础,目的是减少噪声、增强特征并统一图像质量。在这个项目中,可能包括以下步骤: - **灰度化**:将彩色图像转换为灰度图像,简化处理。 - **二值化**:通过阈值分割将图像分为前景(车牌)和背景,便于后续操作。 - **平滑滤波**:使用高斯滤波或中值滤波消除噪声,保持边缘清晰。 - **直方图均衡化**:提高图像对比度,使细节更加明显。 2. 车牌定位: 这一步通常涉及边缘检测和轮廓查找。MATLAB中的Canny算法可以用于检测边缘,而findContours函数则能找出潜在的车牌区域。为了适应不同光照和角度,可能还需要进行倾斜校正,如使用Hough变换检测直线。 3. 色彩分割: 由于蓝色车牌的特性,可以通过色彩空间转换来分离车牌。项目描述中提到,可能使用HSV颜色空间,因为其对光照变化不敏感。设置合适的HSV值范围(如蓝色车牌的HSV值域),筛选出蓝色区域。对于新能源车牌,可能需要调整HSV值域以包含其特有的绿色。 4. 特征提取与模板匹配: 识别出的车牌区域可能还需进一步细化。可以利用边缘检测、直角检测等方法,确认车牌的矩形形状。然后,提取车牌字符的特征,如高度、宽度、间距等,以模板匹配或机器学习算法进行字符识别。 5. 字符识别: 字符识别通常分为两个阶段:特征提取和分类。特征提取可能包括字符轮廓、形状、面积等;分类则可采用支持向量机(SVM)、神经网络等模型进行。MATLAB提供多种机器学习工具箱,方便进行模型训练和测试。 6. 循环处理: 项目描述中提到添加循环,这可能是指对于输入的多张图片,需要重复以上步骤进行车牌识别。循环结构可以确保每张图片都能得到处理,并将结果输出或保存。 7. 性能优化: MATLAB虽然功能强大,但在处理大量图像时速度可能较慢。为了提高效率,可以考虑使用MATLAB的并行计算工具箱,或者将部分关键代码用C/C++重写,再通过MATLAB的MEX接口调用。 通过上述步骤,基于MATLAB的车牌识别系统能有效识别蓝色车牌,并具备一定的扩展性以适应新能源车牌。然而,实际应用中可能还需要不断调整参数、优化算法,以应对各种复杂环境和条件。
2024-08-16 19:18:13 5.27MB MATLAB 图像处理 车牌识别
1
Zernike拟合是一种在光学领域广泛应用的技术,主要用于分析和描述光学系统中像差的分布。Matlab作为一种强大的数学计算和编程环境,是实现Zernike拟合的理想工具。在这个压缩包中,提供的Matlab程序可以帮助用户进行Zernike多项式拟合,从而对光学图像的品质进行评估和优化。 Zernike多项式是一组正交函数,它们可以用来表示在圆形域上的任何连续函数。在光学中,这些多项式被用来量化和矫正透镜系统的像差,如球差、彗差和畸变等。Zernike多项式的优点在于它们能够简洁地描述复杂的像差,并且可以通过简单的系数来调整。 Matlab程序通常包括读取数据、预处理、拟合和可视化几个步骤。你需要加载包含解包裹数据的文件,这个数据可能是由其他方法(如文中提到的“枝切法解包裹”)生成的。解包裹是将环绕角度的数据转换为线性坐标的过程,以避免数值问题。 在Matlab中,你可以使用内置的函数或者自定义脚本来读取和处理数据。然后,使用Zernike拟合算法将这些数据拟合到一系列的Zernike多项式上。这可能涉及到最小二乘法或者其他优化算法,以找到最佳的多项式系数,使得拟合误差最小。 拟合完成后,你可以通过绘制Zernike系数的图来理解像差的类型和程度。此外,还可以生成像面的重建图像,以直观地展示拟合效果。Matlab的图形用户界面(GUI)或脚本命令都可以完成这些可视化任务。 为了深入理解并应用这个程序,你需要熟悉Matlab的基本语法,包括数据读取(如`load`函数)、矩阵操作、优化工具箱(如`lsqcurvefit`函数)以及图形绘制(如`plot`和`surf`函数)。此外,理解Zernike多项式的数学原理以及光学成像的基本概念也是必不可少的。 这个Matlab程序提供了一个实用的工具,帮助光学工程师和研究人员分析像差,优化光学系统的设计。通过学习和使用这个程序,你可以提升自己在Zernike拟合和光学成像分析方面的技能,为实际的光学系统设计和改进工作打下坚实基础。
2024-08-16 15:58:21 995KB matlab
1
在IT行业中,Aspen Plus和MATLAB是两个广泛使用的软件工具。Aspen Plus是一款强大的化学过程模拟软件,常用于化工、石油和能源行业的热力学、流体动力学以及过程设计和优化。MATLAB则是一款多用途的编程环境,主要用于数值计算、符号计算、数据分析以及图形用户界面(GUI)开发。 **Aspen Plus** 是美国AspenTech公司开发的过程模拟软件,其核心在于对复杂化学反应过程的精确建模。它提供了大量的物理模型库,涵盖了传质、热力学、流动、反应工程等领域,使得工程师能够预测和分析各种化学过程的行为,从而进行工艺设计、操作条件优化和成本估算。 **MATLAB** 是MathWorks公司的一款高级编程语言,以其矩阵运算和可视化功能而闻名。MATLAB支持多种科学计算,包括线性和非线性方程求解、微积分、信号处理、图像处理等。它的强大之处在于可以通过编写脚本或函数,实现自定义算法,并可以与其他软件(如Aspen Plus)进行接口集成。 **Aspen与MATLAB联用** 主要体现在用户可以通过MATLAB调用Aspen Plus的接口,实现更灵活的数据处理和分析。这种联用有以下几个主要优点: 1. **自动化模拟**:用户可以编写MATLAB脚本来自动执行Aspen Plus的多次模拟,无需手动输入每次的变化参数,大大提高了工作效率。 2. **高级数据处理**:MATLAB可以对Aspen Plus的输出结果进行复杂的后处理,如数据拟合、统计分析、优化算法等,提供更深入的洞察。 3. **界面定制**:利用MATLAB的GUI开发能力,可以构建用户友好的界面,方便非专业用户与Aspen Plus进行交互。 4. **模型集成**:将Aspen Plus的模型与MATLAB的模型相结合,可以创建跨学科的综合系统模型,如热电联产或多能源系统的集成。 5. **实时数据接口**:通过MATLAB实时接口,Aspen Plus可以与实时操作数据对接,实现闭环控制和在线优化。 在提供的"航煤收率"文件中,很可能包含的是一个关于航空煤油生产过程的Aspen Plus模拟案例。通过MATLAB调用Aspen Plus,可能涉及到原料性质变化、操作条件调整、收率优化等问题。用户可能在MATLAB中编写脚本,分析不同操作条件下的航煤收率变化,以找到最佳操作条件或进行过程优化。 Aspen Plus与MATLAB的联用是化工工程中提高效率和优化设计的重要手段。通过结合两者的优势,工程师可以更好地理解和控制复杂化学过程,实现工艺的精细化管理。
2024-08-16 15:09:51 163KB aspen
1
这项工作的目的是提出对电能分配系统技术规划方法的调整,以考虑使用电能发电和消耗的随机分布。在本研究中,可以计算公交车上的负载,找到所有涉及该问题的大小,从而可以估计和更换负载超过66%的导体。OPENDSS用于计算IEEE123和MATLAB网络功率流的资源,用于数据管理、网络、噪声过滤、网络操作等资源。此外,在模拟效率流以及发电点和消耗点的排列之后,可以计算整个网络的重新供电成本。
2024-08-16 14:00:27 1.41MB matlab
1