本文通过实战案例讲解TPA-LSTM实现多元时间序列预测,在本文中所提到的TPA和LSTM分别是注意力机制和深度学习模型,通过将其结合到一起实现时间序列的预测,本文利用有关油温的数据集来进行训练模型,同时将模型保存到本地,进行加载实现多步长预测,本文所利用的数据集也可以替换成你个人的数据集来进行预测(修改个人的数据集的地方本文也进行了标注),同时本文会对TPA和LSTM分别进行概念的讲解帮助大家理解其中的运行机制原理(包括个人总结已经论文内容)。TPA(Temporal Pattern Attention)注意力机制是一种用于处理时间序列数据的注意力机制。它的工作原理是在传统的注意力机制的基础上引入了时间模式的概念,以更好地捕捉时间序列中的重要模式和特征。LSTM(长短期记忆,Long Short-Term Memory)是一种用于处理序列数据的深度学习模型,属于循环神经网络(RNN)的一种变体,其使用一种类似于搭桥术结构的RNN单元。相对于普通的RNN,LSTM引入了门控机制,能够更有效地处理长期依赖和短期记忆问题,是RNN网络中最常使用的Cell之一。配合我的博客大家可以实现预测。
2024-01-21 09:53:02 2.04MB LSTM 深度学习 人工智能 时间序列预测
1
深度学习模型现在很火,应用的领域也是各方各面。在序列预测方面,当属LSTM模型的应用最广。我基于matlab编写了用LSTM模型实现多步预测时间序列的程序代码。序列数据是我随机生成的,如果有自己的数据,就可以自己简单改一下代码,读取txt或excel都可以。注意读取后的序列必须命名为行向量。代码最后还提供了误差分析部分,展示了绝对误差、MAE、RMSE、MAPE共4个误差指标,可供参考。代码基于matlab2021版编写,适用于2018版之后的所有版本。
2024-01-12 14:18:10 3KB matlab lstm 文档资料 开发语言
Pytorch实现基于LSTM的情感分析的代码和数据集
2024-01-12 14:03:45 1.23MB pytorch
1
pytorch采用LSTM实现文本翻译,序列到序列学习Seq2Seq,数据集为Multi30k,从德语(de)翻译到英语(en),有编码层和解码层。
2024-01-12 13:15:19 51.87MB pytorch pytorch lstm Seq2Seq
1
crowd-counting-cnn This implementation is from The author implements MCNN model on Shanghaitech dataset. I just modified some details to create UCSD dataset and UCF_50 dataset and test the MCNN model on these dataset. I am not sure whether it is okay to upload the modified implementation and if it is wrong, please contatct me and I will delete it. . UCF_50 在MCNN上测试UCF_50dataset,根据设置,使用5折交叉验证,所以,数
2023-12-26 19:41:42 327.14MB Python
1
目标:根据历史数据,预测当天股票最高价 模块导入 import pandas as pd import matplotlib.pyplot as plt import datetime import torch import torch.nn as nn import numpy as np from torch.utils.data import Dataset, DataLoader 数据读取 原始数据获取 预测股票价格的简单小程序,LSTM 实现,基于 Pytorch。数据预处理时,将训练数据和验证数据进行了统一处理,发生了数据泄露,因此仅供娱乐,并不实用。
2023-12-24 15:41:12 623KB Pytorch
1
本文档详细讲解了LSTM的内部机理,调理清楚,通俗易懂,适合深度学习爱好者作为进阶材料阅读.
2023-12-21 22:51:51 1.74MB LSTM
1
本文来自于云社区,本文章主要介绍了转置卷积层和正卷积层的关系和区别是什么呢,转置卷积层实现过程又是什么样的呢,希望读后会给您带来帮助。在CNN提出之前,我们所提到的人工神经网络应该多数情况下都是前馈神经网络,两者区别主要在于CNN使用了卷积层,而前馈神经网络用的都是全连接层,而这两个layer的区别又在于全连接层认为上一层的所有节点下一层都是需要的,通过与权重矩阵相乘层层传递,而卷积层则认为上一层的有些节点下一层其实是不需要的,所以提出了卷积核矩阵的概念,如果卷积核的大小是n*m,那么意味着该卷积核认为上一层节点每次映射到下一层节点都只有n*m个节点是有意义的,具体的映射方式下一节会讲到。到这
2023-12-17 16:16:20 606KB
1
采用LSTM神经网络,基于时间线可以实现数据的预测,包括股票价格随时间的变化预测、多地天气的温湿度数据的预测。本资源已经跑通,用户替换掉数据集data.csv等文件即可,简单易上手。
2023-12-12 10:00:33 1.02MB lstm 神经网络 价格预测 预测算法
1
基于卷积-长短期记忆网络加注意力机制(CNN-LSTM-Attention)的时间序列预测程序,预测精度很高。 可用于做风电功率预测,电力负荷预测等等 标记注释清楚,可直接换数据运行。 代码实现训练与测试精度分析。
2023-12-11 12:30:03 285KB 网络 网络 lstm
1