一个HLS设计的卷积神经网络加速器,并在zynq7020开发板上部署成功。数据集采用的是MNIST手写体,加速的网络为一个拥有4层卷积,2层池化和1层全连接层的自定义小网络,适合初学者学习。
2023-04-11 20:59:26 76.05MB fpga开发 cnn 人工智能 神经网络
卷积神经网络 Python tensorflow keras CNN VGG16 imagenet 预训练权重 人脸识别分类 训练集测试集评估准确率 maxpolling dropout jupyter notebook numpy pandas 数据分析 数据挖掘 深度学习 机器学习 人工智能
2023-04-11 20:51:39 47.9MB 深度学习 cnn 卷积神经网络 数据挖掘
1
6种算法(线性回归、随机森林、支持向量机、BP神经网络、GRU、LSTM)对电力系统负荷进行预测。通过一个简单的例子。 各种算法(线性回归、随机森林、支持向量机、BP 神经网络、GRU、LSTM)用于电力系统负载预测/电力预测。
2023-04-11 12:09:30 726KB 预测模型 负荷预测 GRU LSTM
1
CNN-RTLSDR 使用rtl-sdr加密狗进行深度学习信号分类。 当前的预训练模型能够对4种信号进行分类:WFM,TV Secam载波,DMR信号和“其他”信号。 预先模型测试 将软件存档解压缩到某个文件夹,例如C:\ rtlsdr 转到并选择Python 3.6版本,64位图形安装程序或直接下载: : 如果您没有现代的NVIDIA图形卡,则要安装CPU版本,只需在requirements.txt中删除以下行: tensorflow-gpu==1.4.0 运行anaconda提示符,将目录更改为C:\ rtlsdr,然后运行: conda install pip pip install -r requirements.txt 仅对于Tensorflow的CUDA版本,如果已安装CPU版本,请跳过以下步骤: 下载并安装CUDA 8工具包: : 下载用于工具包8的C
2023-04-10 21:41:43 15.21MB Python
1
孕妇的产前体检是围产医学的重要组成部分,产前预测胎儿体重可以为判断胎儿健康发育提供准确的参考.孕妇的多次体检记录在孕周时间上有不均匀时间间隔分布的特点.本研究对不均匀时间间隔的处理提出了LSTM模型的变种——变长时间间隔的LSTM模型(Variable Time Interval LSTM,VTI-LSTM).本研究数据来源于2015~2018年多家妇产科医院的10 473个孕妇的122 462条体检记录.实验比较了传统的公式估算法以及GBDT,MLP,SVR,RNN,LSTM,VTI-LSTM等机器学习方法的胎儿体重预测结果,其中,VTI-LSTM在低体重和巨大儿的预测上取得良好的预测结果.
1
使用CNN的蘑菇识别分类器 目标: 该项目的目的是创建一个工具,该工具能够对来自大约1000种不同流行蘑菇种的蘑菇图片进行分类。 介绍: 蘑菇是重要的食物来源,并且在烹饪中被广泛使用,在许多美食中(特别是中国,韩国,欧洲和日本)。 此外,许多人喜欢户外活动来收集蘑菇。 但是,这种活动带来一些健康风险,因为某些有毒物质物种看起来与可食用标本相似。 在下面的示例中,我介绍了美味可食用的蘑菇Macrolepiota mastoidea和鹅膏菌鹅膏菌之间的相似性,这种摄入会导致死亡。 因此,辨别哪些蘑菇可以安全采摘是很重要的。 在本笔记本中,我将训练一种算法,该算法可以帮助我们对蘑菇种类进行分类。 使用的代码和资源: 的Python版本:3.7 使用的软件包:pandas,numpy,csv,bing_image_downloader,simple_image_download,pat
2023-04-10 14:11:28 22.59MB JupyterNotebook
1
winograd 算 法 的 代 码
2023-04-09 16:12:55 210KB CNN winograd
1
matlab蔡氏混泥土仿真代码蜂窝非线性网络 由 Leon Chua 开发的蜂窝非线性网络 (CNN) 的软件实现。 背景 - 我强烈推荐这套讲座。 他讨论了生物学、复杂性、混沌以及他首先将其理论化的一项非常重要的 ML 新兴技术,即忆阻器。 网络动力学 从上图中可以看出,这是一个动态系统,而不仅仅是一个查找表。 在 CNN 范式中,给出了一个 19 位基因作为网络对图像执行操作的模板。 可以看到一个简单的Matlab代码,如果你想跟随,一个python版本。 在 python 版本中,网络作为一个对象存在,我们可以将图像和基因发送到该对象。 在 CNN 范式中,基因基于生物学,其中基因决定了分子的构成以及系统的大部分行为和发展方式。 第一个数字 Z 本质上是偏差。 基因中的第 2 个到第 10 个数字 B 可以重新整形为 3 x 3 输入权重卷积。 第 11 到第 19 个数字包含 3 x 3 抑制权重卷积 A。随着时间的推移,网络为每个像素确定一个值。 在接收到输入图像后,像素i , j的激活是通过将所有像素最近邻居的输出乘以 A(即抑制),加上 B 和输入的乘积,然后加上 Z 来
2023-04-08 20:04:15 2.03MB 系统开源
1
对RNN及其改进版本LSTM的的介绍,和其中的运行机制的说明 RNN的结构 口简单来看,把序列按时间展开 为了体现RNN的循环性,可以将多层fod起来
2023-04-08 17:02:09 2.81MB 深度学习 LSTM
1
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真代码
2023-04-08 09:45:37 1.8MB
1