Vision Transformers组内汇报PPT
2022-04-06 03:09:29 2.58MB 深度学习 机器学习
1
交通标志识别 将交通标志图像识别并分类为来自数据集的43类。 该项目是Rob Fergus领导的纽约大学计算机视觉课程的一部分,并作为Kaggle竞赛进行。 该模型是使用带有IDSIA网络修改版本的Spatial Transformer网络设计的,并使用大量增强的数据进行了训练。 该模型在Kaggle排行榜上达到了约99.5%的测试设置精度,远高于人工精度。 该项目的整个开发过程可以在阅读。 数据 从下载培训和测试文件夹 跑步 项目可以通过两种方式运行,即main.ipynb jupyter笔记本(最初用于实验)和main.py文件。 对于jupyter笔记本,它包含与数据增强,预处理和培
1
machine vision_Ramesh Jain Rangachar Kasturi Brian G.Schunck
2022-03-31 20:15:38 188.86MB machine vision Ramesh Jain
1
labview 视频图像显示 包含vision模块
2022-03-31 09:40:53 41KB labview 视频图像显示 vision
1
计算机视觉算法与应用computer vision algorithm and application
2022-03-28 23:55:00 47.42MB 计算机视觉 算法 应用
1
在网上下载的PRML中文版 机器学习的经典中的经典. 此中文版,并非官译,是某大神在学习原版时,为了方便学习而翻译的. 有需要的拿走,不能设置0分,最低只能设置1分.见谅!
2022-03-28 16:50:32 11.71MB PRML 中文版
1
基于Gabor特征的屏幕内容图像质量评估模型 IEEE图像处理事务(T-IP) ,曾焕强,,侯俊辉,陈静和 | 介绍 该网站共享IEEE图像处理事务(T-IP),第1卷,“屏幕内容图像的基于Gabor特征的质量评估模型”的代码。 27,pp.4516-4528,2018年9月。 抽象的 本文提出了一种基于提取的Gabor特征的准确高效的全参考图像质量评估(IQA)模型,称为基于Gabor特征的模型(GFM),用于对屏幕内容图像(SCI)进行客观评估。 众所周知,Gabor滤波器与人类视觉系统(HVS)的响应高度一致,并且HVS对边缘信息高度敏感。 基于这些事实,将具有奇数对称性并产生边缘检测的Gabor滤波器的虚部用于参考和失真SCI的亮度,以分别提取其Gabor特征。 然后独立测量在LMN颜色空间中记录的提取Gabor特征和两个色度分量的局部相似性。 最后,采用Gabor特征池化策略来
1
凯拉斯(Keras)RMAC 基于(Tolias等人2016)和(Gordo等人2016),为Keras重新实现了区域最大卷积激活(RMAC)特征提取器。 该模型的架构如下图所示: RoiPooling代码来自: : 先决条件 此代码需要Keras 2.0或更高版本。 (2.7) (2.1.2) (0.9.0) ->下载文件并将其保存在data/文件夹中 参考 Tolias,G.,Sicre,R.和Jégou,H.具有CNN激活的积分最大池的特殊对象检索。 ICLR 2016。 Gordo,A.,Almazán,J.,Revaud,J.和&Larlus,D。深度图像检索:学习图像搜索的全局表示。 ECCV 2016。 引文 该代码是Keras的RMAC的重新实现。 如果使用此代码,请引用使用重新实现的论文和原始RMAC论文: @article{garcia2018a
2022-03-26 15:46:27 2.3MB python computer-vision retrieval keras
1
CVPR2021-代码 论文开源项目(带代码的文件)合集!CVPR 2021论文收录列表: : 注1:等2021年2月28日开奖后,欢迎各位大佬提交issue,分享CVPR 2021本文和开源项目! 注2:CVPR 2021已交稿成立!已投稿且想要进来的群同学,可以添加微信: CVer9999 ,请备注: CVPR2021已投稿+姓名+学校/公司名称!一定要根据格式申请! 【推荐阅读】 论文开源项目合集: : ECCV 2020论文开源项目合集: : 关于往年CV顶会论文(如ECCV 2020,CVPR 2019,ICCV 2019)以及其他优质CV论文和大盘点,详见: : 【CVPR 2021论文开源目录】 [人脸活体检测(面部防欺骗)](#面部防欺骗) 骨干 RepVGG:使VGG样式的ConvNets再次出色 论文: : 代码: : 甘 通过分层样式分
1
WSDDN PyTorch 使用最新版本的PyTorch实施Weakly Supervised Deep Detection Networks 。 Bilen, H., & Vedaldi, A. (2016). Weakly supervised deep detection networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2846-2854). 实施差异 亚当优化器(而不是SGD) 未添加空间正则化器 实验 基于VGG16的模型最接近EB + Box Sc. L型案例,报告为30.4 mAP 基于AlexNet的模型最接近EB + Box Sc. 模型S的案例,报告为33.4 mAP 将VGG16用作基本模型时的结果 航空 自行车
2022-03-24 19:44:16 14KB computer-vision deep-learning pytorch pascal-voc
1