内容概要:本文详细探讨了基于V2G(车到电网)技术的电动汽车双向OBC(车载充电机)的MATLAB仿真模型构建。系统分为前级双向AC/DC单相PWM整流器和后级双向DC/DC CLLC谐振变换器。前级电路实现单位功率因数的AC/DC转换,后级电路通过PFM控制实现高效双向DC/DC转换。文中还介绍了功率设置、仿真波形分析以及充放电模式切换的控制逻辑。通过该仿真模型,能够深入了解新能源汽车车载充电机的工作原理,为实际硬件设计提供理论支持。 适合人群:从事新能源汽车技术研发的工程师和技术爱好者,尤其是对电力电子和MATLAB仿真感兴趣的读者。 使用场景及目标:适用于希望掌握电动汽车双向OBC设计原理的研究人员和工程师。目标是通过仿真模型理解双向OBC的工作机制,优化参数配置,提高系统效率和稳定性。 其他说明:文中提供了详细的MATLAB代码片段和参数设置技巧,有助于读者快速上手并进行进一步的实验和改进。
2025-12-26 22:48:37 1.17MB
1
AEB(自动紧急制动)技术的基本原理、风险评估模型的构建方法以及Simulink在AEB系统中的应用。首先,文章解释了AEB系统的工作机制,强调它如何通过实时监测和评估车辆周围环境来避免或减少交通事故。接着,重点讨论了基于TTC(碰撞时间)和危险系数的风险评估模型,阐述了TTC计算和危险系数评估的具体方法。然后,文章展示了如何利用Simulink搭建风险评估状态机模型和底层PID控制实施模型,以实现AEB系统的仿真。最后,通过TruckSim和CarSim的联合仿真工具,实现了对AEB系统在实际道路条件下的全面模拟。这不仅有助于初学者理解AEB系统的运行原理,也为进一步研究提供了坚实的基础。 适合人群:对AEB技术和自动驾驶感兴趣的初学者,尤其是希望深入了解AEB原理和Simulink建模的技术人员。 使用场景及目标:适用于想要掌握AEB系统基本原理和技术实现的研究人员和工程师。通过学习本文,读者可以了解如何构建风险评估模型并使用Simulink进行仿真,从而为实际项目提供理论支持和技术指导。 其他说明:本文不仅涵盖了AEB技术的基础知识,还涉及到了具体的模型构建和仿真工具的应用,是一份非常实用的学习资料。
2025-12-26 14:05:44 340KB Simulink PID控制 联合仿真
1
永磁同步电机(PMSM)位置三环控制模型的搭建过程及其原理。首先解释了电流环的设计,包括关键公式的推导和MATLAB代码实现,强调了积分项处理的重要性以及参数整定的方法。接着讨论了速度环的作用,特别是加速前馈补偿的应用,提高了系统的动态响应速度。最后探讨了位置环的设计,提出了变参数PID控制器来增强抗干扰能力和提高控制精度。此外,还提到了dq轴耦合问题的解决方法,并推荐了几本相关领域的权威书籍供进一步学习。 适合人群:对电机控制系统感兴趣的工程技术人员、研究人员及高校学生。 使用场景及目标:适用于需要深入了解和掌握PMSM位置三环控制模型的设计原理和技术细节的人群。目标是帮助读者能够独立完成类似控制系统的开发和优化。 其他说明:文中提供了具体的数学公式、编程代码片段以及实用技巧,有助于读者更好地理解和应用所学知识。同时,推荐了一些专业书籍作为扩展阅读材料,便于读者进行更深入的学习。
2025-12-25 22:06:06 185KB 电机控制 MATLAB PID控制 参数整定
1
本文介绍了Mujoco官方在Github上发布的高质量模型仓库Mujoco Menagerie,该仓库包含了多种常见机器人模型,如人形机器人、机械臂和底盘等,是初学者学习Mujoco仿真和XML文件编写的宝贵资源。文章详细演示了如何在仿真环境中使用这些模型,包括拉取仓库、运行UR5机械臂、Agilex Piper机械臂、ALOHA人形机器人、Unitree G1人形机器人以及RealSense D435i RGBD相机等案例。此外,还提供了如何修改XML文件以避免机器人无限下坠的实用技巧,鼓励读者通过实践学习Mujoco的XML文件编写和修改。 Mujoco官方在Github上推出的模型仓库Mujoco Menagerie是Mujoco仿真领域中的一个高质量资源库。这个仓库不仅汇集了多种类型的机器人模型,而且覆盖了人形机器人、机械臂和各种底盘等模型,为初学者学习Mujoco仿真技术和编写XML文件提供了极为丰富的素材。该指南详细介绍了如何在仿真环境中操作这些模型,包括如何克隆仓库,以及对一些代表性模型进行操作的具体流程。例如,用户可以按照指南步骤学习如何在仿真环境中运行UR5机械臂、Agilex Piper机械臂、ALOHA人形机器人和Unitree G1人形机器人等。此外,指南还特别强调了在使用模型过程中,修改XML文件的重要性。针对常见问题,如机器人在仿真中无限下坠的现象,指南提供了实用的修改XML文件的技巧。通过指南的详细演示和技巧分享,读者可以更深入地了解Mujoco的XML文件编写和修改方法,从而能够更有效地进行机器人仿真和学习。整个指南内容全面,重点突出,是一份非常实用的学习Mujoco的参考资料。
2025-12-25 18:02:25 6KB
1
内容概要:本文介绍了如何利用Sentinel-2遥感影像和Google Earth Engine(GEE)平台,结合多种光谱指数与随机森林(Random Forest, RF)机器学习模型,检测沿海和半咸水湖泊中的有害藻华(HABs)。通过计算MNDWI、NDCI、AFAI、MCI和ABDI等光谱指数,构建水体与藻华特征,并基于NDCI阈值生成训练标签,采用分层采样方法提取样本并划分训练集与测试集。使用100棵决策树的随机森林分类器进行模型训练与验证,评估指标包括总体精度、Kappa系数、生产者/消费者精度及F1分数。最终生成藻华危险分布图,并统计有害藻华占水体总面积的百分比,结果可导出至Google Drive。; 适合人群:具备遥感基础知识和GEE平台操作经验的科研人员或环境监测相关领域的技术人员,熟悉Python编程及基本机器学习概念的学习者; 使用场景及目标:①实现对有害藻华的自动化遥感监测;②掌握光谱指数构建、样本采集、模型训练与精度评估的完整流程;③应用于湖泊、河口等水域生态环境管理与预警系统; 阅读建议:建议结合代码实践,理解每一步的数据处理逻辑,重点关注指数选择依据、标签生成方式及模型性能分析,注意调整参数以适应不同区域的水体特征。
2025-12-25 17:59:06 10KB 遥感图像处理 随机森林分类 Google
1
电动汽车定速巡航控制器 基于整车纵向动力学作为仿真模型 输入为目标车速,输出为驱动力矩、实际车速,包含PID模块 控制精度在0.2之内,定速效果非常好 自主开发,详细讲解,包含 资料内含.slx文件、lunwen介绍 电动汽车定速巡航控制器是一种先进的电子装置,主要用于维持电动汽车以某一设定的速度稳定行驶,这对于提高驾驶的便利性和安全性具有重要意义。这种控制器通常基于整车纵向动力学模型来进行工作,它能够根据驾驶员设定的目标车速,通过精确控制输出的驱动力矩来调节车辆的实际行驶速度。在这个过程中,PID(比例-积分-微分)控制模块发挥着核心作用,通过实时调整驱动力矩来确保车辆速度的稳定,同时控制精度非常高,一般可以控制在0.2%以内,这意味着车辆的速度可以非常精确地维持在设定值附近。 从文件列表中可以看出,相关资料包含了技术分析文档、控制器的工作原理说明、以及一些示例图片和仿真模型文件。这些资料的详尽程度表明开发者在自主开发的过程中进行了深入的研究和细致的实验验证。通过这些文件,我们可以看到定速巡航控制器不仅仅是一个简单的装置,它涉及到复杂的算法设计和动力学分析,这些都是确保其稳定性和精度的关键因素。 此外,文档中提到的“slx”文件和“lunwen介绍”可能分别指代仿真模型的文件格式和论文或研究报告的介绍。这些文件对于理解电动汽车定速巡航控制器的内部工作原理、实现方法和实际应用具有重要的参考价值。尤其对于那些需要进行控制器性能评估、优化或者进一步开发的工程师和技术人员来说,这些资料是宝贵的资源。 电动汽车定速巡航控制器不仅仅是一个简单的设备,它是一个集成了精确控制算法和复杂动力学模型的高科技产品。通过对这类控制器的研发和应用,可以显著提升电动汽车的驾驶体验,降低驾驶者的疲劳度,同时也能为节能减排做出贡献。
2025-12-25 17:35:00 93KB
1
ROMS区域海洋模式是一种广泛应用于海洋科学研究的数值模型,它能够模拟海洋内部的物理过程,包括海流、温度和盐度分布等。ROMS模型因其能够进行精细化模拟和处理复杂的海洋环境而备受青睐。SWAN波浪模型则专门用于计算风成海浪,能够模拟波浪在海洋中的传播、成长、衰减以及波动与海底和海岸线的相互作用。COAWST集成指的是将ROMS模型与SWAN波浪模型以及其他相关模型如大气模型等进行耦合,以便能够进行更加全面和综合的海洋环境模拟。 MATLAB作为一种高效强大的数学计算软件,被广泛应用于科学计算、数据分析以及算法开发等领域。在海洋数值模拟领域,MATLAB提供了一种便捷的平台,用于开发和实现各种复杂的海洋模型和分析工具。 预处理与后处理是数值模拟中的两个重要环节。预处理涉及模型的设置,包括网格生成、边界条件的确定以及初始场和气候文件的构建,这些都是模拟开始前必要的准备工作,确保模型能够准确地反映出研究区域的海洋特征。后处理则是在模拟完成后,对结果数据进行分析、可视化和解释的过程,它涉及对海量模拟数据的提取和解读,以便研究者能够更好地理解模拟结果并得出科学结论。 基于MATLAB的ROMS区域海洋模式预处理与后处理综合工具包是一个集成了一整套功能的软件包。它不仅可以帮助用户更加高效地完成模型的设置工作,还可以在模型运行结束后对输出数据进行系统的处理和分析。这套工具包的使用,能够极大地提高工作效率,减少因手动设置和分析产生的错误,为海洋科学研究提供了一种更加科学和专业的数值模拟解决方案。 此外,工具包还具备用户友好的操作界面和详尽的使用文档,使得即便是没有深厚背景知识的初学者也能够快速上手,进行海洋数值模拟的相关工作。这对于促进海洋科学的教学和研究工作具有重要意义。 在实际应用中,这套工具包可以帮助科研人员和学生深入研究海洋环流、气候变化、污染物扩散、海洋生态等多方面的课题。通过构建精确的数值模型,研究者能够对各种海洋现象进行模拟和预测,为海洋资源的可持续利用和海洋环境的保护提供理论基础和科学依据。 基于MATLAB的ROMS区域海洋模式预处理与后处理综合工具包是一个功能全面、操作简便、应用广泛的海洋数值模拟解决方案。它整合了海洋模型的多个关键步骤,通过一套工具包的形式,极大地简化了复杂的模拟流程,降低了使用门槛,提升了研究效率。这对于推动海洋科学的发展和教育具有重要作用。
2025-12-25 17:19:59 14.62MB
1
内容概要:文章基于MATLAB构建了齿轮-轴-轴承系统的含间隙非线性动力学模型,结合牛顿第二定律建立齿轮啮合动力学方程,并引入修正Capone模型的滑动轴承无量纲雷诺方程,模拟系统在不同转速下的动态响应。通过数值求解微分方程并绘制位移-速度相图,揭示系统随转速变化出现的混沌行为,进而分析其非线性动态特性。 适合人群:具备机械系统动力学基础和MATLAB编程能力,从事旋转机械建模、故障诊断或非线性动力学研究的科研人员与工程技术人员。 使用场景及目标:①实现含间隙齿轮-轴承系统的非线性建模;②分析系统在不同工况下的混沌演化规律;③掌握基于MATLAB的微分方程求解与相图可视化方法。 阅读建议:重点关注微分方程的分段刚度与间隙处理逻辑,以及轴承力计算中数值积分的实现技巧。建议运行代码并调整参数(如meshgrid密度)以观察系统动态细节变化。
2025-12-25 14:45:14 426KB
1
MRF8P9040N 是飞思卡尔(现 NXP)推出的一款高性能 LDMOS 晶体管,以下是关于它的详细介绍: 基本信息 类别3:RF FET 晶体管类型3:LDMOS(双) 封装形式3:TO-270BB 电气性能 频率范围1:700-1000MHz 电源电压1:28V 输出功率1:40W(46dBm) 增益1:19dB 工作电流1:静态工作电流 Ids 典型值为 312mA 线性度2:在高频应用中能够提供出色的线性度,适用于对线性要求较高的电路。 稳定性1:在 700-1000MHz 频率内稳定因子大于 1,在整个带内稳定。 特性 高功率密度2:能够在相对较小的尺寸和空间内处理较高的功率,可满足高功率输出需求。 低导通电阻2:有助于降低功率损耗,提高电路效率,减少发热,提高能源利用效率。 良好的热稳定性2:可在不同的温度条件下保持较为稳定的性能,能适应不同的工作环境温度,提高了可靠性。 应用领域 功率放大器2:在无线通信、广播电视、雷达等领域的功率放大器中广泛应用,能将输入信号功率放大到所需的水平,以满足发射功率要求。 开关电路2:可作为射频开关使用,实现信号通道的切换、功率分配等功能
2025-12-25 13:11:23 773KB 射频电路 功率放大器
1
matlab齿轮-轴-轴承系统含间隙非线性动力学 基于matlab的齿轮-轴-轴承系统的含间隙非线性动力学模型,根据牛顿第二定律,建立齿轮系统啮合的非线性动力学方程,同时也主要应用修正Capone模型的滑动轴承无量纲化雷诺方程,利用这些方程推到公式建模;用MATLAB求解画出位移-速度图像,从而得到系统在不同转速下的混沌特性,分析齿轮-滑动轴承系统的动态特性 程序已调通,可直接运行 ,关键词:Matlab;齿轮-轴-轴承系统;含间隙非线性动力学;牛顿第二定律;动力学方程;修正Capone模型;无量纲化雷诺方程;位移-速度图像;混沌特性;动态特性。,基于Matlab的齿轮-轴-轴承系统非线性动力学建模与混沌特性分析
2025-12-25 11:07:44 873KB scss
1