用于Pytorch的简单StyleGan2 基于的Stylegan2的简单Pytorch实现,可以从命令行进行完全培训,无需编码。 下面是一些不存在的花。 这些手也不 这些城市也没有 这些名人也没有(由训练) 安装 您将需要一台装有GPU和CUDA的计算机。 然后pip这样安装软件包 $ pip install stylegan2_pytorch 如果您使用的是Windows计算机,则可以使用以下命令。 $ conda install pytorch torchvision -c python $ pip install stylegan2_pytorch 利用 $ styleg
1
更新了60轮并去掉判别器是否可训练的代码
2021-03-20 12:15:17 26.18MB 深度学习
1
AI插画师:生成对抗网络数据集。数据集包含有6万多张二次元妹子的头像。
2021-03-20 09:24:39 334.76MB AI
Speech Enhancement Generative Adversarial Network in PyTorch
2021-03-06 20:34:30 133KB Python开发-机器学习
1
生成对抗网络(GAN)是无监督学习领域最近几年快速发展的一个研究方向,其主要特点是能够以一种间接的方 式对一个未知分布进行建模。在计算机视觉研究领域中,生成对抗网络有着广泛的应用,特别是在图像生成方面,与其他的 生成模型相比,生成对抗网络不仅可以避免复杂的计算,而且生成的图像质量也更好。
2021-02-07 12:13:19 1.43MB GAN 图像生成
1
基于pytroch的深度学习练手应用,主要内容是应用生成对抗式神经网络自动生成动漫人物头像,以达到以假乱真的效果。
2021-02-04 15:50:58 8.72MB 深度学习 生成对抗式神经网络
1
针对生成对抗网络(GAN)这一热点模型,介绍其发展和应用的趋势。本文主要对比了现有几种典型的生成对抗网络模型及其变体:生成对抗网络(GAN)、条件生成对抗网络(CGAN)、深度卷积生成对抗网络(DCGAN)、半监督生成对抗网络(SGAN)信息生成对抗网络(InfoGAN)。同时本文系统地总结了生成对抗网络各种变体在计算机视觉领域的主要应用及性能优劣。文章最后分析了生成对抗网络存在的问题,以及对生成对抗网络研究趋势做了总结和展望。
1
常用深度网络模型,深度卷积网络、深度循环网络,生成对抗网络
1
生成对抗网络(GAN)实例 代码+数据集 很实用的代码,并且简单易学,对深度学习感兴趣的可以看看 数据集有手写图片的识别,也可以替换成自己的数据集
2020-10-28 19:03:55 11.06MB GAN 图像处理 生成对抗网络
1
深度增强学习算法的PyTorch实现(策略梯度/生成对抗模仿学习)
2020-04-13 03:17:09 5.41MB Python开发-机器学习
1