YOLO txt格式的船舶识别数据集,图片数量5000,标签共有10类,类别:['BULK CARRIER', 'CONTAINER SHIP', 'GENERAL CARGO', 'OIL PRODUCTS TANKER', 'PASSENGERS SHIP', 'TANKER', 'TRAWLER', 'TUG', 'VEHICLES CARRIER', 'YACHT']。
2024-05-28 18:14:26 43.95MB 数据集 YOLO Python 深度学习
1
其中包括(600张以上的细胞核图像分割数据集,为医疗图像人工智能等从事者提供数据集,包括json格式和coco格式的标注)
2024-05-28 17:36:08 12.74MB 数据集 人工智能 json
1
高分一C遥感影像数据集
2024-05-28 15:29:14 101B 数据集 遥感影像
1
Titanic.csv
2024-05-27 14:35:59 22KB 数据集
1
基于Word2Vec+SVM对电商的评论数据进行情感分析,Python对电商评论数据进行情感分析,含数据集可直接运行
2024-05-27 13:23:03 30.15MB
这篇文章给大家带来是Transformer在时间序列预测上的应用,这种模型最初是为了处理自然语言处理(NLP)任务而设计的,但由于其独特的架构和能力,它也被用于时间序列分析。Transformer应用于时间序列分析中的基本思想是:Transformer 在时间序列分析中的应用核心在于其自注意力机制,这使其能够有效捕捉时间序列数据中的长期依赖关系。通过并行处理能力和位置编码,Transformer 不仅提高了处理效率,而且确保了时间顺序的准确性。其灵活的模型结构允许调整以适应不同复杂度这篇文章给大家带来是Transformer在时间序列预测上的应用,这种模型最初是为了处理自然语言处理(NLP)任务而设计的,但由于其独特的架构和能力,它也被用于时间序列分析。Transformer应用于时间序列分析中的基本思想是:Transformer 在时间序列分析中的应用核心在于其自注意力机制,这使其能够有效捕捉时间序列数据中的长期依赖关系。通过并行处理能力和位置编码,Transformer 不仅提高了处理效率,而且确保了时间顺序的准确性。定制化训练个人数据集进行训练利用python和pytorch实现
2024-05-27 09:34:37 26.51MB pytorch pytorch 自然语言处理 transformer
1
尺度因子计算
2024-05-26 22:24:01 307.63MB 数据集
1
我的专栏《NLP算法实战》https://mp.csdn.net/mp_blog/manage/column/columnManage/12584253中第4章 文本分类与情感分析算法 用到的数据。 文本分类和情感分析是自然语言处理(NLP)中常见的任务,它们可以用于将文本数据归类到不同的类别或者分析文本中的情感极性。在本章的内容中,将详细讲解在自然语言处理中使用文本分类和情感分析算法的知识。
2024-05-26 21:15:45 108.47MB 数据集
1
10万条数据。家庭用电数据。有功、无功、电压、电流等数据。用于电力居民负荷预测
2024-05-25 19:25:24 126.8MB 数据集
基于LSTM(Long Short-Term Memory)模型的股票预测模型是一个应用深度学习技术来分析和预测股票市场走势的工具。该模型特别适用于处理和预测时间序列数据,能够学习股票价格随时间变化的复杂模式。 此Python资源包含一个完整的LSTM模型实现,适用于金融分析师和机器学习爱好者。它提供了从数据预处理、模型设计、训练到预测的全流程代码。用户可以利用这个模型来提高对股票市场动态的理解,以及对潜在投资机会的把握。 资源中还包含了用于训练模型的示例数据集,以及一个详细的使用教程,指导用户如何配置和运行模型,如何调整超参数以优化预测性能。此外,文档还涉及了模型评估的常用指标,帮助用户了解模型的预测准确性。 使用此模型时,用户应意识到股市存在不确定性,模型预测不能保证投资成功。此外,用户应遵守相关法律法规,合理使用该工具,并尊重数据来源的版权和使用条款。这个资源是金融科技领域探索者和实践者提升技能、深入了解机器学习在金融领域应用的宝贵资料。
2024-05-25 13:26:14 965KB python 深度学习 lstm 数据集
1