This is training material for the PCIe architecture and present all the concept about the PCIe and transmit layer
2021-05-24 14:46:12 28.61MB Slide
1
Oracle Hyperion Planning Training Planning Platform
2021-05-19 17:24:58 926KB Oracle Hyperion Planning
1
C232工具部分展示
2021-05-17 18:04:10 750KB FT232
1
DeepLabV3 + 使用PyTorch的语义分割实现 火车 运行python train.py进行培训 数据集结构(类似于CamVid数据集) ├── Dataset folder ├── train ├── 1111.png ├── 2222.png ├── train_labels ├── 1111_L.png ├── 2222_L.png ├── class_dict.csv 笔记 默认功能提取器是 更改培训配置,更改utils/config.py参数 默认的损失函数是weighted cross entropy
2021-05-14 04:49:28 12KB training pytorch deeplab-v3-plus efficientnetv2
1
Selenium-WebDriver培训
2021-05-11 18:03:29 31KB Java
1
Training.rar
2021-05-11 09:06:30 165.62MB 卷积神经网络
1
PSO for training a regular Autoencoder,PSO在常规自动编码器训练中的应用,我们使用粒子群优化(PSO)来训练自动编码器。包括matlab完整代码。
2021-05-10 20:16:28 2.16MB PSO 粒子群 自动编码 regular
1
training/webapp镜像,方面一些内网用户无法直接pull镜像时下载: 使用方法: docker load -i training-webapp.tar.gz
2021-05-08 19:15:36 131.91MB training-web
1
使用PyTorch的实现 火车 通过更改train.py data_dir来修改imagenet路径 python train.py Number of parameters: 23941296 Time per operator type: 1636.49 ms. 79.33%. Conv 247.179 ms. 11.9822%. Sigmoid 141.509 ms. 6.85977%. Mul 17.3817 ms. 0.842592%. Add 12.8334 ms. 0.622111%. FC 7.49557 ms. 0.363354%. ReduceMean 2062.88 ms in Total FLOP per operato
2021-05-07 15:56:42 12KB training imagenet pytroch efficientnetv2
1
verdi工具使用
2021-05-07 11:01:41 12.35MB verdi 芯片开发 数字IC前端
1