【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85274948 【全部课程列表】 day01-机器学习概述、特征工程、机器学习算法 共127页.pptx day02-sklearn、knn、朴素贝叶斯、决策树、随机森林 共102页.pptx day03-线性回归、岭回归、逻辑回归、分类、聚类算法 共86页.pptx day04-Tensorflow基础与进阶 共74页.pptx day05-Tensorflow IO操作-队列和线程、文件读取、图片处理 共40页.pptx day06-Tensorflow、人工神经网络、卷积神经网络、图片识别 共65页.pptx day07-CIFAR图像分类 图像识别、分布式会话函数、分布式TensorFlow、推荐系统 共76页.pptx
2022-05-04 12:05:55 16.59MB 人工智能 机器学习 文档资料 深度学习
KNN讲义 版,包含knn算法大致介绍和应用场景 点个赞支持一下~有问题也请指正啦~15151515
2022-05-02 17:32:41 1.26MB 算法
1
该代码编写了KNN算法的原理,包括matlab、python的代码,应用在电影分类和约会配对的应用
2022-04-30 17:07:01 327KB 算法 matlab python 分类
C#2008编写的基于K-近邻法(KNN)的水质分类器,初学C#,遇上模式识别课程设计,试着编了一下,利用最基本的公式,代码有些粗糙,但很简单易懂。
2022-04-30 14:38:35 53KB C# 2008 K-近邻法 KNN
1
本资源为机器学习实战的所有源代码。包含的内容有使用k-近邻算法改进约会网站的配对效果、使用k-近邻算法识别手写数字、使用决策树预测隐形眼镜类型、使用朴素贝叶斯过滤垃圾邮件、从疝气病症预测病马的死亡率、SVM手写识别问题回顾、利用AdaBoost元算法提高分类、线性回归预测鲍鱼的年龄、岭回归预测乐高玩具套装的价格、树回归、K-means对地理坐标进行聚类、Apriori算法发现毒蘑菇的相似特征、FP-growth算法从新闻网站点击流中挖掘、PCA对半导体制造数据降维、SVD基于协同过滤的推荐引擎、分布式SVM的Pegasos算法、用mrjob实现MapReduce版本的SVM。’
2022-04-30 13:06:16 12.72MB 机器学习 决策树 回归 支持向量机
KNN均值滤波器的效果(椒盐噪声)
2022-04-29 21:10:46 4.1MB 噪声抑制
1
安全技术-网络信息-模糊传感器网络不确定数据kNN查询方法研究.pdf
2022-04-28 19:00:46 4.11MB 文档资料 安全 网络
bayes matlab的简要实现,通过该代码训练Bayes模型,然后使用iris数据进行测试。
2022-04-28 16:15:04 3KB knn matlab
1
ChineseMnist 中文手写字识别 python 15000张手写中文数据集 使用KNN模型进行分类
2022-04-28 16:06:38 10.47MB python KNN ChineseMNIST MNIST
邻近算法,或者说K最邻近(KNN,K-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是K个最近的邻居的意思,说的是每个样本都可以用它最接近的K个邻近值来代表。近邻算法就是将数据集合中每一个记录进行分类的方法. KNN(K- Nearest Neighbor)法即K最邻近法,最初由 Cover和Hart于1968年提出,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路非常简单直观:如果一个样本在特征空间中的K个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别 [2] 。 该方法的不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最邻近点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。另外还有一种 Reverse KNN法,它能降低KNN算法的计算复杂度,提高分类的效率 [2] 。 KNN算法比较适用于样本容量比较大的类域的自动分类
2022-04-27 16:05:47 4.11MB 机器学习 KNN算法 K-近邻算法 人工智能
1