资源包中有.csv文件和.mat两种格式文件 这组数据代表了在不同操作条件下运行的实验。特别是,研究了刀具的磨损情况(Goebel,1996)。采用三种不同类型的传感器(声发射传感器、振动传感器、电流传感器)进行采样数据。数据被组织在一个1x167的matlab结构数组中。
2024-07-08 21:18:34 14.35MB matlab 数据集
1
【标题】"水稻灯诱害虫数据集(RLPD)"是针对农业生物技术领域的一个专业数据集,它专门收集了与水稻害虫相关的图像信息,以帮助科研人员进行害虫识别、监测以及防治的研究。这个数据集包含了6000多张高质量的图片,这些图片都是在实际的田间环境中通过特定的灯诱装置捕捉到的,能够真实反映害虫在自然状态下的形态特征。 【描述】提到,该数据集涵盖了9种主要的水稻害虫,这意味着研究者可以针对这九种害虫进行深入的学习和分析。这些害虫可能包括但不限于稻飞虱、稻螟虫、稻纵卷叶螟、稻蓟马、稻象甲、稻水蝇等常见的水稻病虫害。每张图片都经过精心标注,指明了害虫在图像中的位置,这种目标检测标签对于机器学习和深度学习算法的训练至关重要。这些标签使得模型能够理解并学习害虫的形态特征,从而在未来实现自动化的害虫识别系统。 在研究生研究期间创建这样的数据集是一项重要的工作,它不仅是个人学术成就的体现,也是对整个科研社区的贡献。这样的数据集可以用于多个研究方向,比如计算机视觉中的目标检测算法优化,农业生态学中的害虫行为研究,甚至可以辅助开发精准农业技术,如智能农业无人机的自动监测系统。 【标签】"数据集"表明这是一个专门用于科研的数据集合,它为研究人员提供了一个基准,可以用来训练和评估他们的算法性能。数据集的质量和多样性对于模型的准确性和泛化能力有着直接影响,因此RLPD的广泛多样性和精确标注使其成为此类研究的理想资源。 【压缩包子文件的文件名称列表】"LTPD(1)"可能是数据集的主要文件,其中可能包含了所有的图像数据以及对应的元数据,如害虫类别、捕获日期、地理位置等信息。这些信息对于理解害虫的分布、活动模式以及它们对环境的响应具有重要价值。 "水稻灯诱害虫数据集(RLPD)"是一个宝贵的科研资源,它将促进农业生物技术、计算机视觉和精准农业等多个领域的交叉研究,推动害虫智能识别技术的发展,并最终有助于提高水稻的产量和质量,保障全球粮食安全。
2024-07-08 16:59:32 86.84MB 数据集
1
在这个“0基础深度学习项目3:基于pytorch实现天气识别”的教程中,我们将探索如何使用PyTorch这一强大的深度学习框架来构建一个模型,该模型能够根据图像内容判断天气状况。这个项目对于初学者来说是一个很好的实践机会,因为它涵盖了深度学习的基础概念,包括图像分类、卷积神经网络(CNN)以及训练和验证模型的基本步骤。 我们要理解数据集在深度学习中的重要性。数据集是模型训练的基础,它包含了一系列用于训练和测试模型的样本。在这个项目中,你可能需要一个包含不同天气条件下的图像的数据集。每个样本应有对应的标签,表明该图像显示的是晴天、阴天、雨天、雪天等。在实际操作中,你可能需要下载或创建这样的数据集,确保其均衡,即各种天气类型的样本数量相近,以避免模型过拟合某一类。 接下来,我们将使用Python和PyTorch库来预处理数据。这包括将图像转换为合适的尺寸,归一化像素值,以及将标签编码为模型可以理解的形式。预处理数据是提高模型性能的关键步骤,因为它帮助减少噪声并使模型更容易学习特征。 进入模型构建阶段,我们将利用PyTorch的nn.Module子类化创建自定义的CNN架构。CNN因其在图像处理任务上的优异性能而广泛使用。一个典型的CNN包括卷积层、池化层、激活函数(如ReLU)和全连接层。在设计模型时,你需要考虑网络的深度、宽度,以及是否使用批量归一化和dropout等正则化技术来防止过拟合。 接下来是模型的训练过程。我们将定义损失函数(如交叉熵损失)和优化器(如Adam或SGD),然后使用训练数据集迭代地调整模型参数。每一轮迭代包括前向传播、计算损失、反向传播和参数更新。同时,我们还需要保留一部分数据进行验证,以监控模型在未见数据上的表现,避免过拟合。 在模型训练完成后,我们需要评估模型性能。这通常通过计算验证集上的准确率来完成。如果模型达到满意的性能,你可以进一步将其应用于新的天气图像上,预测天气情况。 项目可能会涉及模型的保存和加载,以便将来可以快速部署和使用。PyTorch提供了方便的方法来保存模型的权重和架构,这样即使模型训练后也可以随时恢复。 这个基于PyTorch的天气识别项目提供了一个很好的平台,让你了解深度学习从数据准备到模型训练的完整流程。通过实践,你可以掌握如何运用深度学习解决实际问题,并对PyTorch有更深入的理解。在完成这个项目后,你将具备基础的深度学习技能,为进一步探索更复杂的计算机视觉任务打下坚实基础。
2024-07-08 14:13:37 92.01MB 数据集
1
Fusion 360 Gallery数据集 Fusion 360 Gallery数据集包含从参数CAD模型导出的丰富2D和3D几何数据。 该数据集是由CAD软件包用户向提交的设计生成的。 该数据集提供了宝贵的数据,可用于学习人员的设计方式,包括顺序CAD设计数据,按建模操作进行细分的设计以及设计层次结构和连接性数据。 数据集 从大约20,000种可用设计中,我们得出了针对特定研究领域的几个数据集。 当前,以下数据子集可用,并且将持续发布更多数据子集。 来自简单的“草图和拉伸”设计子集的顺序施工序列信息。 基于用于创建每个面的建模操作对3D模型进行的细分,例如拉伸,圆角,倒角等。 刊物 如果您在研究中使用Fusion 360 Gallery数据集,请引用以下相关论文。 重建数据集 @article{willis2020fusion, title={Fusion 360 Galler
2024-07-07 17:04:02 43.68MB JupyterNotebook
1
主要用于多视角卫星影像的三维重建算法,资源共9个文件,其中8个文件分别对应八个压缩文件包,代表每个区域的影像,每个压缩包里对应着多视角卫星影像和RPC文本文件,第九个文件为机载激光雷达产生的真值影像文件,本数据为s2p算法的主要实验数据。数据整体情况:数据量整体较小,但覆盖的类型全,如低矮建筑,中高层建筑,高层建筑等,对卫星三维重建的鲁棒性要求较高,因此是做卫星三维重建的不二选择,目前很多相关论文都拿此进行实验和算法调整优化。
2024-07-06 16:40:42 994.39MB 数据集
1
时间序列数据集
2024-07-05 21:13:12 426B 源码软件
1
标题中的“ADMM动态规划求解微电网调度问题”指的是应用交替方向乘子法(ADMM,Alternating Direction Method of Multipliers)来解决微电网的调度优化问题。微电网是一种小型电力系统,它能集成可再生能源、储能装置以及传统电源,以实现高效、可靠和经济的电力供应。在微电网调度中,目标通常是优化能源分配,降低成本,同时满足供需平衡、设备限制和电力质量等要求。 动态规划是解决这类优化问题的一种数学方法,它通过构建一个模型来表示问题的各个状态和状态之间的转移,从而找到最优策略。在微电网调度中,动态规划可以用来决定在不同时间点如何分配和存储能量,以最小化运行成本或最大化效率。 描述中的“数据集+论文复现”表明这个压缩包包含了用于复现研究结果的数据集和相关代码。复现论文结果是科学研究中的重要步骤,确保了研究的可验证性和可靠性。这里的数据集可能包括了微电网的运行数据,如负荷需求、发电能力、储能设备状态等;而代码(如operation_2.m和operationwithoutsess_1.m)则可能是实现ADMM算法的MATLAB脚本,用于处理这些数据并得出调度决策。 标签中的“动态规划”强调了这种方法在微电网调度中的核心地位;“数据集”意味着包含实际或模拟的微电网运行数据;“毕业设计”则提示这可能是一个学术项目,适合学生作为毕业论文的研究主题。 压缩包内的文件名暗示了不同的数据和结果。例如,“ESPEdata.mat”和其变体可能是微电网的仿真数据集;“result_05.mat”和“result_05_load07.mat”可能存储了特定条件下的调度结果;“energylvl.mat”可能涉及的是能量水平信息;而“ Copy_of_”和“_1”这样的后缀可能是不同版本或备份。 这个压缩包提供的内容涵盖了微电网调度的建模、算法实现和结果分析,为研究者提供了一个完整的框架来理解和复现使用ADMM解决微电网调度问题的工作。通过深入研究这些文件,可以学习到动态规划在能源管理系统中的应用,以及如何利用ADMM算法优化微电网的运行。此外,对于学生来说,这也是一个很好的实践案例,能够提升他们对复杂优化问题解决能力的理解。
2024-07-05 20:21:23 13.95MB 动态规划 数据集 毕业设计
1
这份R语言 报告对Forbes自1990年至2020年发布的最富有运动员数据集进行了探索性分析。通过数据预处理、统计摘要和数据可视化,该报告回答了一些研究问题,如全球最高收入运动员和不同国家的运动员收入。在分析过程中,考虑了处理缺失数据、重新编码变量和汇总数据等步骤。此外,报告还进行了相关性分析和假设检验,揭示了变量之间的关系。通过数据汇总和图表,我们了解了运动员收入与排名、年份之间的关系,还通过国家和运动项目分类比较了运动员收入。
2024-07-05 14:09:13 371KB r语言 数据集
1
Most of the wireless options can be accessed using the program "wl" via the console window. This program has many more options than our WRT is able to process. Some can only be used in Client Mode and others only in Access Point (AP) Mode. Usage: wl [-a|i ] [-hu] [arguments] -a, -i adapter name or number -h, -u this message Examples: ~ # wl ssid ~ # wl txpwr1 -o -m 35
2024-07-05 10:00:13 147KB WL命令
1
Power BI案例-连锁糕点店数据集的仪表盘制作
2024-07-04 21:54:41 937KB 数据集
1