python汽车类型识别源代码带图形界面,基于torch深度学习,目前可识别公交车, 货车,客运车, 面包车, 皮卡车, 小轿车,程序包中已含模型文件
2024-01-15 09:53:23 42.23MB 深度学习
基于不同土壤结构条件下的大田土壤水分入渗试验,通过分析对比结构良好表层土壤(容重在1.2~1.4 g/cm3之间)与特别疏松的表层土壤(容重在1.0~1.2 g/cm3之间)入渗率过程的特性和差异,揭示了土壤稳定入渗控制界面下移的现象。在对土壤的干容重与稳定入渗率之间的关系进行分析的基础上,确定了不同表层土壤结构条件下的入渗控制界面的位置。研究结果表明,结构良好的土壤的入渗控制界面在表层,特别疏松的土壤的入渗控制界面则在犁底层;入渗控制界面在表层的入渗属于无压入渗,入渗控制界面在犁底层的入渗属于非饱和土壤的有压入渗。
2024-01-14 20:52:25 349KB 一维垂直入渗 表层土壤 控制界面
1
BackgroundWorker组件和Thread更新UI界面对比
2024-01-13 22:49:57 46KB BackgroundWorker Thread更新UI界面
1
android界面效果全汇总,告诉你android开发中有哪些好的界面特效,对于初学者,真的很实用
2024-01-13 10:31:41 4.03MB Android
1
VC精美的界面开发源代码,可参考利用,包括对话框,单文档,多文档视图
2024-01-13 08:41:14 1.13MB
1
正常的水结构主要通过与双大分子表面相互作用和弱电磁场来维持,这使电子和质子传导性网络得以扩展。 所有标准化学方法都完全依赖于静电,避免了所有提及电动力学和随之而来的辐射场的出现,辐射场支持了水这一概念,即水是通过电磁方式引入生命系统的生物效应的主要介质。 量子电动力学(QED)场论产生了液态水作为媒介的愿景,由于其分子电子光谱的独特性,它本身已成为进行远程通讯的重要工具,能够改变其超分子态组织与环境互动的功能。 本文引起人们的关注,即Emilio Del Giudice等人独立显示了界面水(纳米级承压水)。 和Gerald Pollack等人分别包含相干域(CDs)和排除区(EZ),这可以被视为CD,动态水结构的CD的长距离集合,它利用水的特殊性质,例如水电子/质子动力学和对电磁场的有组织响应,以低频接收具有相干性(负性)的电磁编码信号,并对产生的激励进行求和,以促进该相干性在可能影响生物系统的频率上重新分布。 讨论了水从液相的普通相干态(散装水)到界面水的半结晶态或玻璃态超相干态的相变及其在生物中的作用。 活体的界面水和细胞内水之间的联系,以及1)电子和质子传递之间的热力学相关性,负
2024-01-11 20:21:23 4.27MB 亲水表面与疏水表面 质子转移
1
我们研究了量子点-脂质体复合物(QLC),它是巨大的单层囊泡,其脂质双层中掺入了量子点(QD)。 旋涂方法与电铸技术相结合产生具有高度均一的单层结构的囊泡。 我们观察到QLC形成过程的QD尺寸依赖性:QLC形成蓝色,绿色和黄色发射的QD(中心半径〜1.05 nm,1.25 nm和1.65 nm),而没有发射红色的QD(中心半径〜2.5 nm)。 为了解释这种大小依赖性,我们建立了一个简单的模型,该模型根据分子堆积参数和脂质构象变化来解释QD大小对QLC形成的影响。 该模型预测,对于Egg-PC脂质,低于某个临界尺寸(半径≈1.8 nm)的QD可以稳定地存在于厚度为4-5 nm的脂质双层中。 这与我们之前的实验结果一致。 对于红色发射的QD,仅在荧光显微镜上观察到QD聚集,而不是QLC。 我们预期填充参数(P)的减小将导致特定QD半径的变化。 我们通过混合DOPG对特定QD尺寸的变化进行的实验观察可以证实这一预测。
2024-01-11 13:41:10 1001KB 光学头区域的界面能 包装参数 DOPC
1
如题,QT5开发与实例第二版光盘源码完整版,可以作为QT5界面开发的有价值的参考,适合C++开发者
2024-01-11 11:14:01 48.35MB 源码 C++界面开发 GUI
1
一款JAVASE编程的皮肤美化界面插件包 Java Swing 界面美化包-含源码
2024-01-11 08:47:18 2.15MB swing 界面美化 substance javase
1
翻译 支持中文对多种语言的互译,PYQT5界面支持设置字体和颜色,支持翻译结果语音播报。 添加了标题栏上的按钮,英译中时可以对标题栏进行语音播报。
2024-01-11 00:01:12 84KB Python
1