博客地址: https://blog.csdn.net/muyashui/article/details/118406612?spm=1001.2014.3001.5502
2024-09-06 16:50:03 7.44MB 可视化 python pyechart
1
python_geohash-0.8.5-cp38-cp38-win_amd64
2024-09-05 17:12:46 18KB
1
Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
2024-09-04 23:59:59 19.12MB
1
Python Web开发实战 《Python Web开发实战》这本书的源代码项目
2024-09-04 11:26:26 1.08MB python
1
基于火龙果数据的作物生长趋势项目,通过学习,如何将你构建的AI服务部署到云端上,实现具备识别火龙果生长趋势的云服务能力。下面是我们做的任务案例: 任务1:火龙果训练数据集准备(使用精灵标注助手进行目标检测图像标注、将训练与验证数据集转tfrecord格式数据集) 任务2:目标检测模型搭建与训练(认识目标检测、 YOLOv3目标检测模型、 tensorflow YOLOv3模型训练) 任务3:生长趋势模型推理与模型评估(作物生长趋势模型推理接口、 作物生长趋势模型推理代码实现、作物生长趋势模型精度评估) 任务4:生长趋势AI模型服务封装( Restfull API、Flask环境搭建、Flask实现火龙果生长趋势AI服务) 任务5:模型云端部署与安装(生长趋势AI服务运行环境配置、编写自动化安装脚本实现服务一键安装与拉起)
2024-09-04 10:17:39 328.01MB tensorflow 人工智能 数据集 目标检测
1
无监督异常检测库 可用算法: 神经网络 神经网络 LOF(以scikit-learn软件包提供) COF INFLO 环形 LOCI 阿罗西 克洛夫 微博 数码相机 CMGOS HBOS 前列腺癌 CMGOS 一类SVM(可在scikit-learn软件包中获得) @作者Iskandar Sitdikov
2024-09-04 10:09:36 6KB python clustering kmeans unsupervised-learning
1
Java可以通过调用Python的YOLO ONNX模型实现AI视频识别,支持YOLOv5、YOLOv8和YOLOv7,这包括了预处理和后处理步骤。在Java中实现目标检测和目标识别,可以集成实时流传输协议(RTSP)和实时多媒体传输协议(RTMP)等功能,使得整个系统更加强大和灵活。首先,Java应用可以通过调用Python的YOLO ONNX模型来实现视频中的目标检测和识别。YOLOv5、YOLOv8和YOLOv7是流行的目标检测模型,它们在不同场景下表现出色,Java可以通过调用这些模型来实现视频中目标的识别和跟踪。其次,Java应用可以集成实时流传输协议(RTSP)和实时多媒体传输协议(RTMP)功能,这使得Java应用可以直接处理实时视频流数据,实现对实时视频的目标检测和识别。这样一来,Java应用可以直接从实时视频流中提取图像数据,送入YOLO ONNX模型进行处理,实现对视频中目标的识别和跟踪。在整个流程中,Java应用可以进行预处理和后处理步骤,例如对图像进行缩放、裁剪、灰度化等预处理操作,以及对YOLO模型输出进行解析、筛选、可视化等后处理操作,从而提高目标检测和识别
2024-09-03 21:24:41 173MB java python 人工智能
1
Python使用FastAPI
2024-09-03 14:34:35 16KB
1
Python数据清洗
2024-09-03 14:32:58 15KB
1
Python使用spaCy
2024-09-03 14:12:33 16KB
1