1.程序说明: 这是一个完整的粒子群算法的MATLAB实现的代码, 待优化的目标函数为 min⁡ y=∑(xi-0.5)^2 粒子维数=10, 可以根据你的需要修改目标函数和各种算法参数 2.程序结果: 最优目标值 Vb_my = 3.56664309847387e-05 最优粒子 pbest_my = 1 至 6 列 0.499506940798657 0.50104765060025 0.500194615895899 0.499164428682584 0.497732394863659 0.496168951163397 7 至 10 列 0.500116035556065 0.50090429777352 0.498503424967773 0.496728949209852 >> 3.作者介绍: 某大厂资深算法工程师, 从事Matlab、Python算法仿真工作15年
2024-01-11 14:23:58 191KB matlab
1
以非线性预测评价为基础,采用BP神经网络模型,利用遗传算法优化网络初始权值和阈值,建立一个新的煤矿底板突水危险性预测的网络模型,通过收集不同突水矿井的资料,综合考虑多种影响底板突水的因素。运用Matlab编程对网络原始数据进行训练,并对不同工作面底板是否突水及突水量进行预测分析,结果表明,该模型收敛速度快、预测精确度高,且具有较强的泛化能力。
2024-01-08 19:32:30 621KB BP神经网络 遗传算法 底板突水
1
MATLAB优化与控制模型代码 基于遗传算法的Bp神经网络优化算法代码.zip
2024-01-08 19:06:02 424KB 神经网络 matlab
1
粒子群优化极限学习机的参数。最佳粒子位置即为最优输入权值和隐层阈值。自己跑过的,放数据匹配一下就可以用
2024-01-05 14:52:37 6KB 粒子群算法优化
1
莱维飞行改进麻雀算法(SSA)优化BP神经网络回归预测,LevySSA-BP回归预测,多变量输入单输出模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-01-05 09:10:10 16KB 神经网络
1
Matlab混合粒子群算法求解TSP问题matlab代码实例(带注释)
2023-12-19 18:50:07 3KB matlab 开发语言
【语音识别】基于BP神经网络的语音情感识别matlab源码.md
2023-12-10 08:16:34 6KB 源码
1
智能算法之粒子群算法及改进. **智能算法:粒子群算法(Particle Swarm Optimization,PSO)** **资源描述:** 1. **算法原理与思想:** 粒子群算法是一种基于群体智能的优化算法,灵感来自于鸟群或鱼群等自然界中群体的协作行为。在PSO中,问题的解被看作是一群粒子,在解空间中不断移动,通过跟随历史上最优解(局部最优解)和整个群体的最优解(全局最优解)来寻找最优解。 2. **基本步骤:** - 初始化粒子群的位置和速度。 - 计算每个粒子的适应度(目标函数值)。 - 更新每个粒子的速度和位置,以便它们向着历史上最优解和群体的最优解移动。 - 重复上述步骤,直到达到预定的停止条件(例如,迭代次数达到预定值或找到满足要求的解)。 3. **算法优势:** - PSO算法简单易懂,容易实现。 - 由于其并行性,PSO适用于高维优化问题。 - PSO具有全局搜索能力,能够找到接近全局最优解的解。 4. **改进的粒子群算法:** - 多种改进的粒子群算法被提出,例如自适应权重PSO(Adapti
2023-12-04 11:31:10 160KB 机器学习 粒子群算法
1
煤矿巷道支护的形式是多种多样的,而在对支护体系的相关参数进行设计时,必须充分考虑各方面的影响因素,如巷道围岩性质、支护形式、应力变化等,这些数据的分析和处理十分复杂,可以通过构建神经网络模型的方式来实现。结合某煤矿的实际情况,对基于MATLAB的BP神经网络模型在巷道支护参数设计中的应用进行了分析,希望能够为煤矿巷道支护体系的设计提供一些参考依据。
2023-12-01 18:45:02 206KB MATLAB BP神经网络 支护参数
1
基于遗传算法优化BP神经网络(GA-BP)的时间序列预测,matlab代码。 模型评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2023-12-01 15:36:09 29KB 神经网络 matlab
1