可编程逻辑器件大作业报告 高育哲 演示视频 作业内容 基于DE1-SOC开发板,使用Verilog语言开发了一个坦克大战小游戏。以下为该小游戏的特点解析: 玩法为人机对战的生存模式:敌方坦克无限复活,我方坦克只有10条生命。生命用完后,将结束游戏,显示ROM中存储的GAME OVER图像。 游戏中一共有一辆我方坦克和两辆敌方坦克(可以通过实例化模块增加)。 我方坦克的生命数通过开发板上的LED灯显示。复位后,LED0~9全亮,此后每损失一条命就有个LED灯熄灭。我方坦克每次被击中时,都会闪烁一次,并损失一条生命。 敌方坦克被击中后,会在2秒后在固定位置复活。复活期间会有动画,并无法移动且不能被击中。 游戏期间击中的敌方坦克数量作为最终的游戏分数。游戏分数通过七段数码显示管显示,显示范围为0~9999。 敌方坦克的运动和发射子弹由伪随机数产生模块控制。 通过四个防抖动的按键KEY0~4控制我
2025-05-26 23:54:07 63.2MB Verilog
1
基于Vivado软件的Verilog半带滤波器仿真程序:涵盖IP核与非IP核实现流程,信号发生、合成、抽取变频等全环节模拟,基于fpga的半带滤波器仿真程序 1.软件:vivado 2.语言:Verilog 3.具体流程:包括ip核实现版本与非ip核实现版本,包含信号发生,合成,半带滤波器,抽取变频,fifo,fft流程,非常适合学习。 ,基于FPGA的半带滤波器仿真程序; Vivado软件; Verilog语言; IP核实现版本; 非IP核实现版本; 信号发生与合成; 半带滤波器; 抽取变频; FIFO; FFT流程。,基于Vivado的Verilog半带滤波器仿真程序:IP核与非IP核实现版本分析
2025-05-26 23:07:18 352KB
1
Verilog是一种广泛应用于数字系统设计的硬件描述语言(HDL),它被用于创建电子系统的模型,包括集成电路、微处理器、接口、存储器等。这个压缩包文件“IEEE Standard Verilog Hardware.pdf”显然包含了IEEE(电气和电子工程师协会)制定的Verilog语言标准,这是理解和学习Verilog语言的重要参考资料。 Verilog语言标准,也被称为IEEE 1364,分为多个部分,包括基础语法、行为建模、结构建模、时序控制、系统级设计等多个方面。下面是对这些关键知识点的详细说明: 1. **基础语法**:Verilog的基本语法结构类似于C语言,包括变量声明、运算符、流程控制语句(如if-else、case、always等)。变量类型有wire、reg、integer、real等,它们在电路描述中各有特定含义。 2. **模块化设计**:Verilog鼓励模块化设计,每个设计可以被封装为一个模块,包含输入、输出和内部信号。模块可以被其他模块实例化,实现层次化的设计方法。 3. **行为建模**:Verilog支持行为级建模,允许设计者以算法的形式描述电路行为。例如,用always块可以描述状态机或微控制器的行为。 4. **结构建模**:Verilog也支持门级和寄存器传输级(RTL)的结构化描述,如AND、OR、NOT、DFF、MUX等基本逻辑元素,以及更复杂的组合和时序电路。 5. **时序控制**:Verilog提供了非阻塞赋值(<=)和阻塞赋值(=)来处理时序问题。非阻塞赋值用于并行操作,阻塞赋值则用于串行操作。 6. **系统级设计**:随着SoC(System-on-Chip)的发展,Verilog也支持高级封装,如interface、class等,用于描述更复杂的系统级交互。 7. **综合与仿真**:Verilog设计经过编译和综合,可以生成适合FPGA或ASIC实现的网表。在设计阶段,使用仿真工具(如VCS、ModelSim等)进行功能验证。 8. **IP重用**:Verilog支持知识产权核(IP Core)的定义和复用,使得设计者能利用已有的成熟模块快速构建新设计。 9. **形式验证**:IEEE 1364标准还包括了形式验证的概念,它通过数学方法证明设计的正确性,是提高设计质量的重要手段。 10. **综合优化**:Verilog设计在综合过程中,会进行优化以满足面积、速度和功耗等目标。 理解并掌握这些Verilog语言标准的关键概念,对于电子工程师来说至关重要,不仅可以提高设计效率,还能确保设计的准确性和可靠性。这个压缩包中的PDF文件应该详细地阐述了这些知识点,是学习和参考的宝贵资源。
2025-05-25 11:50:01 2.07MB verilog 语言标准 IEEE 权威资料
1
OFDM_Synchronization 设计一种新的 OFDM 同步算法,并使用 Matlab 和 Verilog 实现它。 IDE:Matlab 2009、Vivado 2015.2 设备:ZYNQ-7000 FFT 长度:256 CP 长度:32
2025-05-23 17:37:27 100.82MB matlab Verilog OFDM ZYNQ
1
### Verilog AMS 语言参考手册知识点解析 #### 一、Verilog AMS 概述 **Verilog AMS**(Analog and Mixed-Signal)是 **Verilog HDL** 的一种扩展,旨在支持模拟信号和混合信号电路的设计与仿真。它不仅保留了原始 **Verilog HDL** 的数字电路设计能力,还加入了对模拟信号处理的支持,使得设计师能够在一个统一的环境中进行混合信号电路的设计。 #### 二、Verilog AMS 的主要特性 1. **统一的设计环境**:Verilog AMS 提供了一个平台,可以在其中同时进行数字和模拟电路的设计与仿真。 2. **混合信号建模**:支持混合信号电路的建模,包括连续时间模拟行为和离散时间数字行为。 3. **高级建模工具**:提供了一系列高级建模工具,如非线性方程求解器、频域分析等。 4. **系统级设计**:支持系统级的设计和仿真,包括算法级、架构级和系统级的设计。 5. **可扩展性**:支持用户定义模型和库,便于扩展和定制。 6. **仿真精度**:通过精确的模拟和数字仿真引擎,确保高精度的仿真结果。 7. **兼容性**:与现有的 Verilog HDL 设计工具兼容,易于集成到现有的设计流程中。 #### 三、Verilog AMS 的关键概念 1. **连续赋值语句 (Continuous Assignments)**:用于定义模拟信号之间的连续关系,如电压或电流的计算。 2. **事件驱动机制 (Event-Driven Mechanism)**:支持基于事件的模拟信号处理,使得模拟信号的行为更加精确。 3. **混合信号模块 (Mixed-Signal Modules)**:允许在同一模块内同时使用数字和模拟信号。 4. **系统任务和函数 (System Tasks and Functions)**:提供了一系列内置的任务和函数,用于控制模拟信号的仿真过程。 5. **参数化模型 (Parameterized Models)**:支持模型的参数化,方便调整和优化模拟信号的特性。 6. **库支持 (Library Support)**:提供了标准库支持,包含常用的模拟组件模型。 #### 四、Verilog AMS 的应用领域 1. **通信系统**:用于设计复杂的通信系统,如调制解调器、射频电路等。 2. **电源管理**:在电源管理和能源转换系统中,模拟信号的精确控制至关重要。 3. **传感器接口**:开发高精度传感器接口,实现对物理量的准确测量。 4. **音频和视频处理**:在音频和视频处理电路中,混合信号技术可以实现高质量的声音和图像处理。 5. **汽车电子**:在汽车电子领域,混合信号技术被广泛应用于安全系统、动力系统等关键部件的设计中。 #### 五、Verilog AMS 的发展历史 Verilog AMS 由 Accellera 组织于 1996 年首次提出,并经历了多个版本的发展。2008 年发布的 Version 2.3 是该标准的一个重要里程碑,标志着 Verilog AMS 在功能性和标准化方面取得了显著的进步。 #### 六、Verilog AMS 的标准化组织 Accellera Organization, Inc. 负责 Verilog AMS 标准的制定和维护。Accellera 是一个非营利性的行业协会,致力于推进电子设计自动化 (EDA) 工具和标准的发展。其成员包括领先的半导体公司、软件供应商和其他相关组织。 #### 七、结论 Verilog AMS 作为一种重要的混合信号设计语言,在现代电子系统的设计和仿真中扮演着不可或缺的角色。通过对模拟和数字信号的统一处理,Verilog AMS 为工程师提供了一种强大的工具,帮助他们在复杂的设计挑战中取得成功。随着技术的不断进步,Verilog AMS 将继续发展和完善,以满足未来混合信号电路设计的需求。
2025-05-23 15:54:27 3.69MB Verilog
1
Verilog是一种硬件描述语言(HDL),用于设计和验证数字系统的逻辑。在FPGA(Field-Programmable Gate Array)开发中,Verilog是不可或缺的一部分,因为它允许工程师以抽象的方式描述数字电路的行为和结构。本压缩包提供的"Verilog实例"集合是一个宝贵的资源,包含了100多个经过验证的示例,对于学习和理解Verilog编程以及FPGA设计流程大有裨益。 一、Verilog基础知识 1. 数据类型:Verilog提供了多种数据类型,如reg、wire、integer、real等,用于表示不同的信号和变量。 2. 结构体:模块是Verilog的核心结构,它定义了硬件实体,可以包含输入、输出、内部变量和结构体。 3. 运算符:Verilog支持算术运算符(如+、-、*、/)、比较运算符(==、!=、<、>)以及逻辑运算符(&、|、~)等。 4. 时序控制:always块用于描述时序逻辑,例如组合逻辑和时钟驱动的顺序逻辑。 5. 进程和语句:assign语句用于定义即时赋值,always块用于定义行为描述。 二、FPGA设计流程 1. 设计规格:明确要实现的硬件功能,确定输入输出信号和内部逻辑。 2. 模块化设计:将大系统分解为若干小模块,每个模块对应一个Verilog模块。 3. 编写Verilog代码:根据设计规格编写Verilog代码,实现各个模块的功能。 4. 仿真验证:使用工具如ModelSim进行仿真,检查设计是否符合预期。 5. 综合:将Verilog代码转化为门级网表,这个过程通常由Synopsys的VHDL或Xilinx的ISE等工具完成。 6. 布局布线:FPGA厂商的工具会将门级网表映射到具体的FPGA资源上,分配逻辑单元和IO口。 7. 下载和验证:将配置文件下载到FPGA芯片,通过硬件测试平台验证实际功能。 三、Verilog实例应用 1. 逻辑门:包括与门、或门、非门、异或门等基本逻辑操作的实现。 2. 编码器和译码器:例如二进制编码器、七段显示译码器等。 3. 寄存器和移位寄存器:实现数据存储和移位操作。 4. 计数器:模N计数器、二进制计数器、十进制计数器等。 5. 分频器:将高频率信号分频为较低频率信号。 6. 转换器:例如模数转换器(ADC)、数模转换器(DAC)的简单模型。 7. 存储器:如RAM(随机存取存储器)和ROM(只读存储器)的实现。 8. 总线接口:如地址总线、数据总线和控制总线的处理。 9. 控制单元:例如微处理器中的指令解码器和状态机。 10. 数字信号处理:包括滤波器、加法器、乘法器等算法的硬件实现。 这个"Verilog实例"压缩包为初学者提供了一个实践平台,通过分析和仿真实例,能更好地理解和掌握Verilog语言的使用技巧,以及如何将这些知识应用于实际的FPGA设计中。同时,对于有一定经验的工程师来说,这些例子也可以作为参考和灵感来源,以解决更复杂的设计问题。
2025-05-20 21:41:39 184KB fpga verilog实例
1
内容概要:本文详细介绍了基于FPGA的信号发生器的设计与实现,重点讲解了使用VHDL和Verilog两种硬件描述语言开发信号发生器的方法。文中不仅提供了具体的代码示例,如方波信号发生器和DDS(直接数字频率合成)方案,还深入解析了各个部分的功能,包括相位累加器、波形查找表、CORDIC算法的应用等。此外,文章强调了仿真的重要性,并给出了测试平台的构建方法,确保设计的正确性和可靠性。 适合人群:对FPGA开发感兴趣的电子工程学生、硬件开发者及研究人员。 使用场景及目标:适用于希望深入了解FPGA开发流程、掌握VHDL和Verilog编程技能的人群。目标是能够独立完成从需求分析到代码实现再到仿真的全过程,最终实现高效的信号发生器。 其他说明:文章提供了丰富的代码片段和实用技巧,帮助读者快速上手并解决实际开发中遇到的问题。同时,鼓励读者尝试不同的设计方案,探索更多的可能性。
2025-05-20 18:32:21 472KB FPGA VHDL Verilog DDS
1
基于FPGA的信号发生器开发:VHDL与Verilog语言实现及仿真设计资料解析,基于FPGA的信号发生器开发:VHDL与Verilog语言实现及仿真设计资料解析,基于FPGA的信号发生器,使用VHDL或Verilog语言进行开发,可以提供相关的仿真和设计说资料。 ,FPGA; 信号发生器; VHDL或Verilog开发; 仿真; 设计资料; 开发资料。,基于FPGA的信号发生器:VHDL/Verilog开发,仿真与设计方案资料全解析 在当今数字电路设计领域,FPGA(现场可编程门阵列)技术因其高度的灵活性、高效的并行处理能力和快速的研发周期,已成为实现复杂数字系统的关键技术之一。信号发生器是电子工程和通信系统中不可或缺的工具,它能产生预定频率和波形的信号。FPGA技术在信号发生器领域的应用,使得我们可以设计出既具有高性能又具备高度定制化的信号发生器设备。 本资料集深入解析了基于FPGA的信号发生器的设计与开发,包括VHDL与Verilog这两种主流硬件描述语言的实现方式。VHDL(VHSIC硬件描述语言)和Verilog都是用于描述电子系统硬件结构和行为的语言,它们允许工程师通过编写代码来描述电路功能,然后通过综合工具将这些代码转换成可以被FPGA硬件实现的逻辑电路。 VHDL语言由于其严谨的语法和丰富的数据类型,使得它在复杂电路的设计中更为常用,尤其是在航空、军事和工业领域。VHDL语言的模块化和可重用性特点,使得设计者可以在不同的项目之间复用已有的设计模块,从而提高开发效率和设计可靠性。 相对而言,Verilog语言则以其简洁性和易读性在快速原型设计和学术研究中更为流行。Verilog支持更接近传统编程语言的语法结构,这使得初学者更容易上手。然而,随着EDA工具的发展,两种语言之间的界限日益模糊,许多现代综合工具都能很好地支持两种语言,并将它们综合成FPGA的配置文件。 在FPGA信号发生器的设计过程中,仿真设计资料的获取和解析是至关重要的一步。仿真可以在不实际制造硬件的情况下验证设计的正确性,这有助于节省研发时间和降低开发成本。通过对信号发生器的仿真,设计者可以在逻辑层面检查电路设计是否能够产生预期的信号波形,以及是否有潜在的设计错误。 文档中还提到了技术分析、设计与开发技术、在现代科技领域中的应用等话题。这些内容涉及到信号发生器的详细技术规格、设计方法论、以及如何在现实世界的应用中发挥作用。例如,信号发生器可能被应用于无线通信、雷达系统、医疗仪器或科研实验中,其性能直接影响到整个系统的稳定性和可靠性。 HTML文件的存在表明,除了常规的文档资料外,还可能包含一些网页形式的参考资料或者技术手册,这可能为开发者提供更为直观和互动的学习体验。通过网页形式的学习材料,用户可以更方便地接触到实际的硬件操作界面、仿真软件操作演示等,从而加深对FPGA信号发生器设计与开发的理解。 综合以上分析,本资料集为FPGA信号发生器的设计与开发提供了全面的理论基础和技术支持。无论是对于初学者还是有经验的工程师,这份资料都能够提供重要的知识和实践指导,帮助设计者在这一快速发展的技术领域中,实现高效率和高性能的信号发生器解决方案。
2025-05-20 18:29:48 1.55MB
1
SPI(Serial Peripheral Interface)是一种广泛应用于微控制器与外部设备间通信的串行接口标准。在Verilog中实现SPI通信接口,通常涉及到主设备(Master)和从设备(Slave)两个角色,它们通过四个基本信号线进行通信:SCK(时钟)、MISO(主输入/从输出)、MOSI(主输出/从输入)和CS(片选)。下面将详细解释SPI接口的工作原理、Verilog代码实现的关键部分以及设计中可能遇到的问题。 1. SPI接口工作原理: - SPI是同步通信协议,数据的传输依赖于主设备产生的时钟SCK。主设备控制时钟的上升沿或下降沿来决定数据的读取和写入。 - MISO是从设备向主设备传输数据的线,MOSI是主设备向从设备传输数据的线。数据通常在SCK的上升沿或下降沿变化。 - CS(Chip Select)也称为SS(Slave Select),用于选择要通信的从设备。当某个从设备的CS被拉低时,该从设备开始接收或发送数据。 2. Verilog代码实现: - 在Verilog中,SPI接口的实现通常会包含一个模块,分别表示主设备和从设备。这两个模块都应包括对SCK、MISO、MOSI和CS信号的处理。 - 主设备模块需要控制SCK的频率,通过计数器或分频器实现。同时,它需要根据数据发送需求控制MOSI的值,并在适当的时钟边沿激活CS。 - 从设备模块则需要监听SCK,根据其上升沿或下降沿读取MOSI上的数据,同时在MISO线上输出自己的数据。CS信号的激活由主设备决定,从设备通常需要在CS有效时才进行数据传输。 3. 关键Verilog代码结构: - 用always块来处理时序逻辑,例如: ```verilog always @(posedge clk) begin if (!cs_n) begin // 在CS低电平时处理数据传输 mosi <= data_out; // 输出数据到MOSI data_in <= miso; // 从MISO读取数据 end // 控制SCK等其他信号 sck <= ~sck; end ``` - 使用reg类型变量存储数据和状态信息。 - 用case语句处理SPI协议的不同模式(如模式0、模式1、模式2、模式3),这些模式主要区别在于数据是在时钟的上升沿还是下降沿变化,以及是否延迟采样。 4. 设计挑战与优化: - SPI接口的速度优化:根据实际应用的需求,可能需要提高SPI的传输速率,这就要求精细地调整时钟周期和采样时机。 - 多从设备支持:如果设计需要连接多个从设备,就需要添加额外的CS控制逻辑,确保正确地切换和通信。 - 错误检测与处理:为了保证数据的完整性,可以添加CRC校验或其他错误检测机制。 基于Verilog的SPI通信接口设计涉及到了时序逻辑、数据传输控制以及协议规范的理解。通过合理的模块划分和代码编写,可以构建出高效可靠的SPI接口,使得微控制器能与其他SPI设备进行有效通信。在实际项目中,还需要考虑综合、布局布线、时序收敛等因素,以确保设计能在目标FPGA或ASIC上正确工作。
2025-05-19 13:32:23 284KB spi verilog
1
FPGA IP源码解密详解:支持Xilinx Vivado各版本与Modelsim加密IP解密恢复为Verilog或VHDL源码实战教程,FPGA IP源码解密:Xilinx Vivado各版本加密IP解密及P1735格式源码还原为Verilog/VHDL代码,FPGA IP 源码解密 Xilinx Vivado各版本(最新版本2022.1)加密的IP文件解密复原为Verilog或者VHDL源码 Modelsim可以编译仿真的vp加密文件均可以解密复原为Verilog或者VHDL源码 符合P1735格式保护的代码基本都可以解密还原源代码 ,FPGA IP源码解密; Xilinx Vivado IP文件解密; 加密IP文件复原为Verilog或VHDL; 加密文件解密为源代码; P1735格式保护代码解密。,FPGA IP源码解密技术:Vivado与Modelsim兼容的P1735加密复原工具
2025-05-18 23:01:53 4.1MB 数据仓库
1