C语言深度解剖,精炼到位的知识点,有兴趣的小伙伴你们值得拥有!
2024-09-03 08:11:25 1.1MB 电子书
1
【文章概述】 本文主要探讨了基于改进遗传算法的FIR数字滤波器的优化设计。在数字信号处理领域,FIR滤波器因其稳定性、线性相位特性以及设计灵活性而广泛应用。然而,传统的设计方法如窗函数法、经验公式和Parks-McClellan算法各有不足,如无法满足多样需求、设计复杂或收敛速度慢。因此,研究人员转向使用遗传算法来优化FIR滤波器的设计。 【改进的遗传算法】 遗传算法是一种模拟生物进化过程的全局优化搜索算法,具有较强的鲁棒性。然而,标准遗传算法在寻找全局最优解时可能会陷入早熟现象,导致收敛速度慢。为了解决这一问题,文章提出了结合BP神经网络的改进遗传算法。这种结合方式利用了遗传算法的全局搜索能力和BP神经网络的局部搜索能力,有效地解决了大规模多极值优化问题,提高了算法的收敛速度和效果。 【FIR数字滤波器】 FIR数字滤波器是一种输出只与过去和现在输入相关的系统,其频率特性可以通过单位冲激响应表示。对于M阶线性相位FIR滤波器,存在特定的对称约束条件。滤波器的优化设计目标是使实际滤波器的频率特性H(w)接近理想滤波器的频率特性Hd(w),通常采用加权的切比雪夫最佳一致逼近准则。该准则通过误差加权函数W(w)来调整通带和阻带的逼近精度。 【优化过程】 文章描述了改进遗传算法在FIR滤波器设计中的具体实现步骤,包括随机生成初始种群,计算个体适应度,以及利用BP神经网络对非最优个体进行优化,生成新一代种群。这个过程不断迭代,直到满足预设的进化代数或误差阈值。 【总结】 通过对遗传算法的改进,结合BP神经网络,设计FIR数字滤波器的效率和精度得到了显著提升。这种方法不仅能够避免标准遗传算法的早熟问题,还能够快速找到接近全局最优的滤波器设计方案,适用于对时间要求严格的系统。这一研究为FIR滤波器设计提供了新的优化策略,对于数字信号处理领域的实践应用具有重要意义。
2024-09-02 19:53:17 105KB 遗传算法
1
Pro_ENGINEER中文野火版5.0产品设计实例精解 修订版978-7-111-44446-6_13464816.pdf
2024-09-01 21:15:53 23.94MB 电子书
1
标题中提到的“好点子STM32F103ZE开发板原理图.pdf”指的是一个包含STM32F103ZE微控制器的开发板电路图文档。STM32F103ZE是意法半导体公司生产的一种基于ARM Cortex-M3内核的32位微控制器,广泛用于需要高性能、低功耗及成本效益的嵌入式系统。此开发板可能提供了STM32F103ZE芯片的硬件接口和外围电路设计,为开发者搭建硬件平台和进行系统原型开发提供了便利。 描述部分“好点子STM32F103ZE开发板原理图.pdf。”非常简洁,未提供更多信息,仅复述了标题的内容。 标签“STM32F103ZET”似乎与开发板型号有微小的不符,可能意指“STM32F103ZE”,这个标签可能是指特定型号的微控制器,或者是指开发板的特定版本。 【部分内容】列出了众多的引脚命名(如:PIR202、PIP10059、NLPD14、NLPD0、NLPE7等),这些极可能是开发板原理图中各个接口、连接点和功能模块的命名标识。因为从OCR扫描结果来看,存在一定的识别错误或遗漏,所以一些标识可能需要根据实际原理图进行校正。 对于这些命名标识进行解读,可以发现开发板包含以下几类主要的接口或功能模块: 1. PIR系列标识符(如PIR202、PIR102、PIR301、PIR302等),可能表示热释电红外传感器(PIR)相关接口,这类传感器用于检测移动物体的红外辐射变化,常用于安防系统和自动照明系统。 2. PIP系列标识符(如PIP10059、PIP10057、PIP10055等),这些标识可能代表开发板上的某些关键的连接点或跨接线。 3. NLP系列标识符(如NLPD14、NLPD15、NLPD0等)和NLPE系列标识符(如NLPE7、NLPE8、NLPE9等),可能与板上的数字输入/输出、电源和接地相关。 4. NLDB系列标识符(如NLDB0、NLDB1、NLDB2等)和NLPB系列标识符(如NLPB12、NLPB13、NLPB14等),可能与开发板上的数字总线和接口相关。 5. NLPC系列标识符(如NLPC4、NLPC5等)、NLPB系列标识符(如NLPB12、NLPB13、NLPB14等)可能代表了板上的时钟信号线路或总线控制线路。 6. NLCS、NLRD、NLWR等标识符则可能表示存储器接口中的芯片选择(Chip Select)、读(Read)和写(Write)控制线。 7. NLLCD0RST、NLTP0BUSY、NLSPI0CS等标识符表明板上集成了LCD显示屏、触摸屏控制器和串行外设接口(SPI),这些都是常见的外设接口,用于连接显示屏、外部存储器、通信模块等。 8. NLLED0PWM可能代表了数字可调光的LED输出接口,而NLV303COP1可能是指某个特定的电压调节器或电源监控模块。 9. “NLV303COP1PIP102”这样的命名可能表示电源输出102引脚,即某个具体电源输出点,而“PIP102PIP104”和后续的“PIP104PIP106”等可能表示不同电源输出点之间的连接关系。 以上分析是对OCR扫描内容的解读,实际的开发板原理图中可能包含了更多硬件功能描述、电气特性和设计说明,以及可能包含的诸如供电电路、时钟电路、调试接口等。对于设计者和开发者而言,这些信息是构建和调试基于STM32F103ZE微控制器应用系统的重要参考。
2024-08-31 15:29:42 789KB STM32F103ZET
1
在本文中,作者探讨了如何利用MATLAB和Pro/Engineer (Pro/E) 两款软件在钢丝绳建模中的应用,为矿井提升中的重要部件钢丝绳提供了一种新的建模技术。钢丝绳由于其特定的空间结构和应用领域的重要性,需要精确的建模以便于结构分析。本文的技术路线是在MATLAB中编写源程序,处理数学方程生成钢丝绳的轨迹数据,然后将这些数据导出为Pro/E能够识别的格式,从而完成钢丝绳的建模。 我们需要了解Pro/E软件的特性。Pro/E是一款广泛应用于三维设计的软件,拥有丰富的库和精准的计算功能,能够完整地表达产品外形、装配及其功能。它支持多个部门协作在同一产品模型上进行工作,但在复杂的三维设计,尤其是在生成严格数学描述的复杂曲线时,Pro/E的能力会受到一定的限制。这是因为Pro/E对于生成曲线方程的函数支持有限,导致其在设计复杂度上有所不足。 MATLAB,作为一款功能强大的数学软件,提供上百个预定义命令和函数,以及强大的二维和三维图形工具。它还有25个不同工具箱适用于特殊应用领域,使得MATLAB成为应用广泛的工具之一。特别是,MATLAB强大的函数库和数据处理能力,可以处理复杂的曲线方程,并将结果导出。 文中以IWRC1X19型钢丝绳为例,详细介绍了钢丝绳的结构特征,包括断面形状、捻法、股数、钢丝数、以及绳股和钢丝的排列方式。IWRC1X19钢丝绳由中心钢丝和两层分别为6根和12根绕中心钢丝作同心捻转的侧线钢丝构成,其中钢丝直径均为2mm,螺旋升角为76.5度,螺距为52.3mm。钢丝绳的各部名称被详细阐释,包括绳芯、绳股、股芯线、股芯线螺旋半径和侧线钢丝等。 接下来,文章通过MATLAB程序来生成钢丝绳中心钢丝和侧线钢丝的曲线方程。根据公式,作者编写了MATLAB代码,将钢丝绳各部分的数学模型数据转换成Pro/E可识别的ibl格式文件。作者在MATLAB中编写了两个关键部分的代码,即中心钢丝和侧线钢丝的代码。这些代码将生成必要的曲线数据,并将数据保存为ibl文件,以便在Pro/E中使用。 在MATLAB程序中,作者首先定义了中心钢丝曲线方程和侧线钢丝曲线方程。中心钢丝曲线方程描述了钢丝绳中心钢丝的形状,而侧线钢丝曲线方程则涉及到螺旋线的性质,其中螺旋线螺距为参数之一。通过编写MATLAB代码,可以生成大量点的数据矩阵,并将这些数据保存为ibl文件。这些文件包含三维空间中的点坐标,用于在Pro/E中创建钢丝绳模型的轨迹曲线。 最终,这些曲线被用于生成Pro/E中的钢丝绳三维模型。在这个建模过程中,MATLAB和Pro/E互补,MATLAB负责数学计算和数据处理,而Pro/E则利用这些数据完成模型的可视化和进一步的设计分析工作。 通过本文的介绍,我们可以了解到MATLAB在数据处理和复杂数学计算中的强大能力,以及Pro/E在三维设计和模型可视化方面的专业性。将两者结合起来使用,在工程领域尤其是复杂结构建模方面,可以大大拓展设计能力的边界。此外,这种混合使用不同专业软件的方法,也为工程师提供了灵活应对各种设计挑战的新思路。
2024-08-30 20:03:37 898KB MATLAB 数据分析 数据处理 论文期刊
1
DB╱T 29-35-2017 天津市住宅装饰装修工程技术标准.pdf
2024-08-30 18:20:53 12.93MB
1
本报告是由长江证券发布的一份关于钢铁行业的研究报告,题目为“钢铁行业金工看行业之大宗篇二:钢铁金工一相逢”,这份报告旨在通过量化分析的维度,结合金融工程的方法来审视钢铁行业,从而达到对行业更深入的理解和判断。 报告提出了三个主要的研究思路。第一步是行业层面认知规范化,即分析师覃川桃通过分析行业指数自身及其与大盘的变化关系,建立择时模型来判断钢铁行业指数的变化,结论是钢铁行业指数变化的62%来自盈利因素,38%来自估值因素。第二步是落脚到行业基本面,提供客观参数。通过多种行业基本面数据构建模型,预判行业基本面的变化。第三步是建立月度输出模型,辅助择时与选股,通过模型滚动预判,按周期输出择时与择股结论,并力求提高胜率。 报告中探讨了钢铁股的评价方法(WHAT),认为钢铁行业62%的权重依赖于基本面,是大宗行业中对基本面最为依赖的一个。分析了哪些基本面变量最为关键,指出价格和成本是最显著的因子,因为钢铁作为一个需求驱动的强周期行业,价格变动直接反映了供需格局的变化,对盈利影响最大。其余影响盈利的因素还包括需求、库存、投资、产量和价差,但它们的影响相对较小。另外还从股性风格的角度分析了钢铁股的特性,发现行业收益回测显示,钢铁股已经从过去的收益低、回撤大,转变为当前具有配置价值。 在何时配置钢铁股的问题上(WHEN),报告指出重点判断钢价的变化,并且在供给侧改革后,货币因子权重显著提升,成本因子权重明显回落,表明行业配置风险偏好受宏观因素影响较大。模型预测的钢价胜率约为60%,显示出较高的显著性。 在配什么钢铁股的问题上(WHICH),报告根据历史时期将钢铁股的风格变化分为三个阶段:2009年以前以盈利驱动和风险溢价为主,2009-2015年小盘风格为主,而2016年后则以企业质量为主。这反映出行业不同的发展阶段和策略。报告建议,在判断钢价的前提下,低估值、高分红的优质标的将是获取超额收益的首选。 报告中还提到了风险提示,即其结论都是基于历史数据的演绎,并结合了主观判断,因此配置结果仅供参考。同时提示钢铁下游需求可能出现大幅下滑的风险。 报告最后包含了多个图表和表格来辅助说明分析,例如钢铁相对收益、多头策略与基准钢价的比较、预测钢价与实际钢价走势比较等。这些图表通过数据可视化的方式,为报告的结论提供了更加直观的支持。 这份长江证券发布的钢铁行业报告,结合了量化分析和金融工程的视角,对钢铁股的评价、择时和个股选择提出了独到的见解,并通过一系列数据分析和模型预判,为投资者提供了参考。
2024-08-29 23:53:00 1.69MB
1
0050-2016 密码设备管理 设备管理技术规范.pdf
2024-08-29 17:43:23 19.24MB
1
在探讨极化敏感均匀线阵的新盲波达方向(Direction of Arrival, DOA)和极化估计算法之前,有必要对涉及的几个关键概念进行阐述。 极化敏感阵列是一种利用阵列中各个天线单元对信号极化的敏感性来处理信号的阵列系统。极化敏感阵列与传统阵列的不同之处在于,它能够基于信号的极化特征进行信号分解和检测。极化敏感阵列天线可以对具有不同极化特征的信号表现出良好的检测能力,广泛应用于通信、无线电、导航等多个领域。 波达方向(DOA)估计是指确定信号波达方向的过程,这对于雷达、声纳、无线定位等领域至关重要。传统的DOA估计算法如ESPRIT、MUSIC等,都有各自的使用场景和局限性。ESPRIT算法特别适用于均匀线阵,并且能够利用均匀线阵的特性进行参数估计。 接下来,三线性分解是一种信号处理方法,其在ESPRIT和联合近似对角化方法的基础上,能够提供一种概括性的参数估计手段。三线性分解方法在处理具有三线性模型特征的信号时,表现出其独特的优势。 在论文中,作者张小飞和是莺提出了针对极化敏感均匀线阵的一种新的盲DOA和极化估计算法。盲算法指的是不需要或仅需要极少的先验信息即可进行估计的算法。该算法的核心在于对接收信号进行分析,并显示出三线性模型的特性。基于三线性分解,作者建立了一种新的联合估计算法,即极化敏感均匀线阵盲DOA和极化联合估计算法。 算法的性能通过仿真得到验证,结果显示该算法在DOA和极化估计方面具有较好的性能,并且支持小样本情况。这表明算法具有高效性和鲁棒性,尤其适合样本数量有限的情况。 文中还提到的Kruskal关于低阶三线数据分解唯一性的理论基础,为该算法的提出提供了数学支持。在数据模型方面,张小飞和是莺考虑了一个由M个正交偶极子对构成的均匀线阵,阵元间距为半波长,沿着Y轴正半轴均匀排列。该均匀线阵的信号接收模型基于球坐标系,考虑到入射波仅位于YOZ平面,从而简化了模型的复杂度。 极化敏感阵列的接收模型能够进行空域采样并检测目标信号。通过极化矢量的表达式,可以进一步分析信号的极化信息。该模型对于理解算法如何从接收到的信号中提取出DOA和极化特征具有重要意义。 在研究的背景和方法部分,论文提到了当前通信和无线领域中极化敏感阵列的重要性,以及多种DOA和极化估计算法的研究现状。新的算法能够结合极化敏感阵列的优势和三线性分解的特点,为极化敏感均匀线阵的参数估计问题提供了一种新的解决途径。 张小飞和是莺的研究为我们提供了一种新的视角和方法来处理极化敏感均匀线阵的信号,并通过三线性分解技术提出了一种有效的盲DOA和极化估计算法。该算法不仅适用于大规模阵列,同样能够处理小样本情况,具有一定的普适性和应用潜力。随着进一步的研究和仿真验证,这种新算法有望在通信、雷达和无线定位等领域得到广泛应用。
2024-08-29 16:24:50 528KB 极化敏感阵列
1
通信感知一体化技术是6G移动通信系统的核心特性之一,它旨在通过无线通信系统同时实现信息传输和环境感知的功能。这项技术的发展预示着6G不仅仅是简单的通信升级,而是向一个全面感知、高度智能的网络转变,它将融合通信、感知、计算等多种能力,构建一个庞大的分布式神经网络。 6G系统的高频段、大带宽和密集的天线阵列设计,使得通信设备能够利用无线信号的传播特性,比如传输、反射和散射,来获取周围环境的详细信息。这种“网络即传感器”的理念使得通信系统不再局限于信息传递,还能用于环境监测、高精度定位、成像和环境重建等多种感知任务。通过这些感知功能,6G可以更加准确地掌握信道状态,从而优化通信性能,实现更高效的数据传输。 在未来十年,无线技术的创新将推动从人联、物联到万物智联的转变。6G网络不仅连接万物,还赋予它们智能和感知能力,这将深刻改变社会和经济结构,促进物理世界、生物世界和数字世界的深度融合。这种融合将开启全新的应用场景,例如自动驾驶、智慧城市、远程医疗和虚拟现实等,为实现真正的万物互联、万物智能、万物感知铺平道路。 IMT-2030(6G)推进组的无线技术工作组在通信感知一体化领域展开了深入研究,涵盖了应用场景需求、基础理论、空中接口技术、组网技术、硬件架构和原型验证等多个方面。这些研究为6G技术的发展提供了理论依据和实践指导,同时也揭示了这一领域的研究挑战,包括如何处理通信和感知任务之间的冲突、如何优化频谱资源的共享、如何设计高效的多任务处理硬件架构等。 通信感知一体化的关键技术可能包括但不限于:新型的信号处理算法,以同时支持通信和感知;智能天线设计,以提高空间分辨率和感知精度;灵活的频谱管理策略,以适应动态变化的通信和感知需求;以及集成计算和通信的硬件平台,以降低延迟并提高能效。 通信感知一体化技术是6G移动通信系统的重要组成部分,它将为未来的智能社会带来革命性的变革。通过深入探索这一领域的关键技术,有望推动6G的快速发展,进一步拓宽通信技术的应用边界,并为社会进步注入新的动力。
2024-08-29 13:54:56 8.18MB 数字通信
1