以jupyter为平台,利用python实现对墨尔本10年气候变化数据集的特征处理,然后并利用机器学习模型进行训练以及对原始数据集的拟合,最后来评价那种模型的拟合效果最佳。(提供了相关数据集)
1
使用LSTM、GRU、BPNN进行时间序列预测源码+数据集(课设源码).zip 使用LSTM、GRU、BPNN进行时间序列预测 Jupyter Notebook 课程大作业 使用LSTM、GRU、BPNN进行时间序列预测 Jupyter Notebook 课程大作业
2022-12-24 20:26:50 58KB JupyterNotebook LSTM GRU BPNN
印度尼西亚降雨模式分类使用时间序列K均值 使用时间序列k均值对印度尼西亚的三种主要降雨模式进行聚类。 k均值中的距离计算是动态时间规整(DTW),通常用于模式匹配和时间/顺序数据聚类。
2022-12-23 21:13:12 2KB
1
基于MATLAB的时间序列建模与预测,包括时间序列理论知识及建模、预测编程。
2022-12-22 23:16:49 1.03MB 时间序列 MATLAB建模
1
(二)趋势预测(最小二乘法) 三种最常用的趋势预测模型: 线性趋势模型 指数曲线趋势模型 二次曲线趋势模型
2022-12-22 21:09:54 677KB 时间序列
1
教你怎么用R语言做时间序列预测.doc
2022-12-22 18:21:39 515KB r语言
时间序列的自相关关系 自相关函数 随机过程的自相关函数 样本的自相关函数 偏自相关函数 随机过程的偏自相关函数 样本的偏自相关函数
2022-12-22 13:32:23 926KB 时间序列
1
SZ-taxi。该数据集由深圳2015年1月1日至1月31日的出租车轨迹数据组成,本文选取罗湖区156条主要道路作为研究区域。实验数据主要包括两部分。一个是156*156的邻接矩阵,它描述了道路之间的空间关系。每一行表示一条道路,矩阵中的值表示道路之间的连接性。另一个是特征矩阵,它描述了每条道路上的速度随时间的变化。每一行代表一条路,每一列是不同时段道路上的交通速度。每15分钟计算一次每条路上的车速。GNN-LSTM GCN GNN LSTM RNN
2022-12-21 11:27:21 2.03MB 深度学习 LSTM 图神经网络 智能交通
1
时间序列是按时间顺序排列的、随时间变化且相互关联的数据序列。分析时间序列的方法构成数据分析的一个重要领域,即时间序列分析。代码
2022-12-20 23:24:45 488KB 时间
1
可利用matlab进行时间序列的预测,arma程序预测可靠
2022-12-20 23:06:17 2KB ARMA预测 ARMA预测 ARMAmatlab ARMA