YOLOv4 CrowdHuman 教程 这是一个演示如何使用和训练YOLOv4人检测器的。 目录 设置 如果您打算在上训练模型,您可以跳过本节并直接跳到上。 否则,要在本地运行训练,您需要有一台具有不错 GPU 的 x86_64 PC。 例如,我主要使用台式 PC 测试此存储库中的代码: NVIDIA GeForce RTX 2080 Ti Ubuntu 18.04.5 LTS (x86_64) CUDA 10.2 cuDNN 8.0.1 此外,您应该在本地 PC 上正确安装 OpenCV(包括 python3“cv2”模块),因为数据准备代码和“darknet”都需要它。 准备训练数据 对于在本地 PC 上的训练,我使用“608x608”yolov4 模型作为示例。 请注意,我在本教程中只使用了 python3(python2 可能不起作用)。 请按照以下步骤准备“ Cr
2021-10-14 14:14:11 1.37MB JupyterNotebook
1
用CNN识别验证码| python识别验证码| 训练验证码模型
1
人体姿态检测摔倒检测源码,内含训练好的模型和素材,下载即可运行检测老人行人摔倒,可支持图片检测本地视频检测网络摄像头检测。
2021-10-11 17:02:24 46.8MB 人工智能 深度学习 python
voc0712 训练的ssd模型,mAP值为77%,网络结构是作者开源的ssd代码的标准的ssd 300*300的网络
2021-09-13 11:22:59 100.28MB ssd 预训练 vgg16
1
两线元素预测器 作者:tanh仁杰 日期:2018年5月11日 [1]是一种广泛用于跟踪绕地球轨道飞行的物体的数据格式。 在TLE中编码的是6维状态向量, [2]阻力项,平均运动的一阶和二阶导数以及对象的其他杂项。 存在各种已建立的传播模型,例如SGP,SGP4,SDP4,SGP8和SDP8,这些模型用于预测卫星的未来状态向量。 但是,由于TLE固有的不确定性,该错误也会随着时间传播。 例如,从 [3]下载的典型TLE,动量矢量分量Px,Py,Pz平均可以具有+ -10km / h的不确定性。 一天之后,不确定性将为+ -240 km / h,这是不理想的。 通常,由这种传播模型产生的状态向量是不准确的,并且在一天的模拟之后无法使用。 必须通过获取新的TLE来刷新它们。 由于这种不确定性,有很多哭狼案。 Celestrak借助其称为“ (SOCRATES)的平台,免费提供对卫星有效
2021-09-07 15:03:35 2.33MB JupyterNotebook
1
查看文章 https://blog.csdn.net/wwt72/article/details/106101707,使用该数据集学习华为云ModelArts,文件名称对应文章目录相关名称。 文件内容注:全民AI成长计划课程 - 实验环境准备.pdf 和 foods_recongition_23.tar
2021-08-31 10:10:07 75.8MB 华为云 ModelArts 食物图片数据集
1
使用NVIDIA预训练模型和Transfer Learning Toolkit 3.0与机器人创建基于手势的交互 在这个项目中,我们演示如何训练您自己的手势识别深度学习管道。 我们从预先训练的检测模型开始,使用Transfer Learning Toolkit 3.0将其重新用于手部检测,然后将其与专用手势识别模型一起使用。 经过培训后,我们将在NVIDIA:registered:Jetson:trade_mark:上部署此模型。 可以将这种手势识别应用程序部署在机器人上以理解人类手势并与人类进行交互。 该演示可以作为点播网络研讨会提供: : 第1部分。训练对象检测网络 1.环境设置 先决条件 Ubuntu 18.04 LTS python> = 3.6.9 = 19.03.5 docker-API 1.40 nvidia-container-toolkit> = 1.3.0-1
2021-08-26 15:23:37 257KB C
1
PyTorch中的ImageNet培训 这将对ImageNet数据集上的流行模型架构(例如ResNet,AlexNet和VGG)进行训练。 要求 安装PyTorch( ) pip install -r requirements.txt 下载ImageNet数据集并将验证图像移动到带标签的子文件夹中 为此,您可以使用以下脚本: : 训练 要训​​练模型, main.py使用所需的模型架构和ImageNet数据集的路径运行main.py : python main.py -a resnet18 [imagenet-folder with train and val folders] 默认学习率计划从0.1开始,每30个时代衰减10倍。 这对于ResNet和具有批处理归一化的模型是合适的,但对于AlexNet和VGG来说太高了。 使用0.01作为AlexNet或VGG的初始学习率:
2021-08-25 14:02:13 11KB Python
1
今天小编就为大家分享一篇pytorch 使用加载训练好的模型做inference,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2021-08-20 17:31:55 32KB pytorch 加载 训练模型 inference
1
checkpoint 保存路径 model_path下存有包含多个迭代次数的模型 1.获取最新保存的模型 即上图中的model-9400 import tensorflow as tf graph=tf.get_default_graph() # 获取当前图 sess=tf.Session() sess.run(tf.global_variables_initializer()) checkpoint_file=tf.train.latest_checkpoint(model_path) saver = tf.train.import_meta_graph({}.meta.for
2021-08-11 15:02:01 45KB c check checkpoint
1