社交情感分类旨在预测嵌入在由各种用户贡献的在线评论中的情感React的聚合。 这样的任务具有固有的挑战性,因为从自由文本中提取相关语义是一个经典的研究问题。 此外,在线评论通常以稀疏的特征空间为特征,这使得相应的情感分类任务非常困难。 另一方面,尽管由于深度神经网络具有将稀疏的低级特征转换为密集的高级特征的能力,因此已被证明对语音识别和图像分析任务有效,但它们在情感分类上的有效性仍需进一步研究。 本文报道的工作的主要贡献是开发了一种新型的语义丰富的混合神经网络(HNN)模型,该模型利用无监督的教学模型将语义域知识整合到神经网络中,以引导其推理能力和可解释性。 据我们所知,这是将语义纳入神经网络以增强社交情感分类和网络可解释性的第一个成功工作。 通过基于三个现实世界社交媒体数据集的实证研究,我们的实验结果证实,提出的混合神经网络优于其他最新的情感分类方法。
1