界面简洁,功能强大,易于上手的一款数值优化仿真计算软件平台。与Lingo、GAMS、matlab等相比毫不逊色。非线性优化使用通用全局优化算法,对初值不依赖。
1
常微分方程王高雄第三版电子课件 《常微分方程(第3版)/十二五普通高等教育本科国家级规划教材》是原中山大学数学力学系常微分方程组编《常 微分方程》1978年初版及l983年第二版后的新修订版 。考虑到二十多年科学技术的发展,除尽量保持原书 结构与易学易教的特点外,在教学时数不增加及内容 可选的前提下,适当补充应用实例、非线性内容及计 算机应用,包括分支、混沌、哈密顿方程、数值解等 ;并增加数学软件在常微分方程中应用作为附录;同 时在绪论中简单介绍了常微分方程的发展历史和在数 学中的地位,书后附习题答案及参考文献。
2021-07-10 22:17:56 6MB 常微分方程 王高雄 电子课件
1
matlab常微分方程常微分方程组的求解-matlab常微分方程常微分方程组的求解.pdf matlab常微分方程常微分方程组的求解
2021-07-09 18:05:27 947KB matlab
1
高等数学ppt课件 7-1常微分方程的基本概念
2021-07-09 14:02:25 731KB 高等数学ppt课件7-1常微分
Galerkin方法求解常微分方程组的实现 程序实现
1
本资源涵盖解多元方程组、非线性方程和常微分方程的软件组合,介绍如下: 线性方程组的数值解法: 线性方程组亦即多元一次方程组。在自然科学与工程技术中,很多问题的解决常常归结为解线性方程组,如电学中的网络问题,船体数学放样中的建立三次样条函数问题,机械和建筑结构的设计和计算等等。因此,如何利用电子计算机这一强有力的计算工具去求解线性方程组,是一个非常重要的问题。线性方程组的解法分直接(解)法{是指在没有舍入误差的假设下,经过有限步运算即可求得方程组的精确解的方法。}和迭代(解)法{是用某种极限过程去逐步逼近线性方程组精确解的方法,即是从一个初始向量x0出发,按照一定的迭代格式产生一个向量序列xk,使其收敛到方程组A*x=b的解}。该部分就是针对线性方程组求解而设计的,内容包括:线性方程组的直接解法:Gauss消去法、Gauss列主元消去法、Gauss全主元消去法、列主元消去法应用『列主元求逆矩阵、列主元求行列式、矩阵的三角分解』、LU分解法、平方根法、改进的平方根法、追赶法(解三对角)、列主元三角分解法;线性方程组的迭代解法:雅可比迭代法、高斯-塞德尔迭代法、逐次超松驰迭代法;迭代法的收敛性『正定矩阵判断、向量范数、矩阵范数、严格对角站优矩阵判断』。 非线性方程的数值解法: 在科学研究与工程技术中常会遇到求解非线性方程f(x)=0的问题。而方程f(x)是多项式或超越函数又分为代数方程或超越方程。对于不高于四次的代数方程已有求根公式,而高于四次的代数方程则无精确的求根公式,至于超越方程就更无法求其精确解了。因此,如何求得满足一定精度要求的方程的近似根也就成为了广大科技工作者迫切需要解决的问题。该部分就是针对这一问题而设计的,内容包括:二分法、迭代法、迭代加速法、埃特金加速法、牛顿切线法、弦截法。 常微分方程的数值解法: 常微分方程的求解问题在实践中经常遇到,但我们只知道一些特殊类型的常微分方程的解析解。在科学和工程问题中遇到的常微分方程的往往很复杂,在许多问题中,并不需要方程解的表达式,而仅仅需要获得解在若干点的就算解即可。因此,研究常微分方程的的数值解就很有必要。该部分就是针对这些而设计的,内容包括:欧拉(Euler)方法、龙格库塔(Runge-Kutta)方法、线性多步方法
1
周义仓 常微分方程及其应用。 西安交通大学常微分方程教材,《常微分方程及其应用》,周义仓老师编写 常微分方程 周义仓
2021-07-03 11:55:39 33.62MB 常微分方程 周义仓 微分方程 微分
1
常微分方程是高等数学课程重要内容之一,常微分方程的求解和解的性态分析是这部分教学的主要内容。通过相应问题的具体代码,给出运用MATLAB平台求解常微分方程解析解、数值解以及定性分析仿真的方法。
2021-06-24 22:03:08 1.94MB MATLAB 常微分方程 数值解 稳定性
需要网络加载
2021-06-24 09:02:48 18KB 常微分方程
1
四阶Runge-Kutta法解常微分方程组matlab
2021-06-23 15:43:40 683KB matlab
1