对文章《A COMPREHENSIVE REVIEW OF YOLO: FROM YOLOV1 AND BEYOND》进行了翻译和注释,方便做论文、或者研究YOLO技术参考用。实时物体检测已经成为众多邻域应用的关键组成部分,这些领域包括:自动驾驶车辆、机器人、视频监控和增强现实等。在众多物体检测算法中,近年来,YOLO(You Only Look Once)框架以其卓越的速度和准确性脱颖而出,实际证明能够快速可靠地识别图像中的物体。自诞生以来,YOLO经过了多次迭代,每个版本都在前一版本的基础上进行改进,不断在提高性能,截至本文发稿,YOLO框架从V1已经更新到了v8。作为机器视觉技术应用的我们,有必要对YOLO的技术演进进行系统了解,熟悉YOLO每个版本之间的关键创新、差异和改进(如网络设计、损失函数修改、锚框适应和输入分辨率缩放等)。从而更好地把握YOLO的技术发展主脉搏,更好地选择应用相关的视觉识别技术。
2024-03-12 22:49:47 5.05MB 毕业设计 自动驾驶 ar 网络
1
这份资源是一份针对深度学习计算机视觉领域的实例分割源码,使用 Ultralytics YOLOv8-seg 模型和 COCO128-seg 数据集进行目标检测和实例分割任务。提供了一个亲身测试且直接可运行的实例分割解决方案。 数据集我已经准备好了,确保用户可以无需额外下载数据即可直接开始模型的训练和验证。这个资源旨在帮助用户轻松理解和应用 YOLOv8-seg 模型进行目标检测和实例分割。适合那些寻求快速部署和测试深度学习模型的开发者和研究人员,特别是在计算机视觉领域。
2024-03-07 14:40:18 66.4MB 数据集
1
大图像中的小目标检测-基于YOLOV8+OnnxRuntime部署+滑动窗口+Zbar的条码检测研究
2024-02-23 17:35:17 51.48MB 目标检测
1
yolov8n-seg.pt,yolov8s-seg.pt,yolov8m-seg.pt,yolov8l-seg.pt,yolov8x-seg.pt分割预训练权重文件
2024-02-17 19:52:20 284.3MB 图像分割 深度学习 人工智能
1
YOLOv8改进,融合Gold-YOLO Neck
2024-02-13 18:49:35 55KB
1
YOLOv5|YOLOv7|YOLOv8改各种IoU损失函数:YOLOv8涨点Trick,改进添加SIoU损失函数、EIoU损失函数、GIoU损失函数、α-IoU损失函数-CSDN博客.mhtml
2024-01-15 16:19:33 3.33MB
1
这个项目是一个基于YOLOv8-Pose的姿态识别系统,专门用于识别和分析人体姿态。项目采用了最新的YOLOv8-Pose算法,结合了COCO数据集的8种常见姿态,能够快速准确地识别人体的各种姿态。这个可以作为一个简单的项目案例,后续可以直接换成自己的数据去进行训练。 功能特点: 高效识别:使用了先进的YOLOv8-Pose算法,确保了识别的准确性和效率。 支持多种姿态:能够识别COCO数据集中定义的8种主要姿态。 实时处理能力:项目设计支持实时姿态识别,适用于视频监控、动态分析等场景。 使用方法: 环境要求:详细说明所需的操作系统、依赖库和运行环境。 安装步骤:提供项目安装和配置的具体指导。 运行指南:说明如何启动姿态识别任务,包括命令行参数等。
2024-01-15 10:20:54 30.81MB 数据集
1
yolov8 人脸检测数据集 一万张照片,300 epoch训练好的模型best.pt文件 准确率能达到百分之八十以上 预训练模型使用yolov8s, gpu3080ti训练两天
2024-01-12 10:59:09 21.43MB 数据集 人脸检测
1
YOLOv8使用TensorRT加速!首先是YOLOv8模型训练和导出:使用YOLOv8的训练代码和数据集进行模型训练。导出YOLOv8模型的权重文件和配置文件,以便后续在C++中加载和使用。安装TensorRT和相关依赖:下载并安装NVIDIA TensorRT,TensorRT是一个深度学习推理加速库。安装CUDA和CUDNN,确保与TensorRT版本兼容。安装OpenCV,用于图像处理和预处理。将YOLOv8模型转换为TensorRT格式:使用TensorRT提供的工具和API将YOLOv8模型从常规框架(如PyTorch或)转换为TensorRT格式。这涉及模型的序列化和优化,以便在TensorRT中进行高效的推理。 本栏目使用C++编写应用程序代码来加载TensorRT格式的YOLOv8模型并进行推理。使用TensorRT的C++ API,创建推理引擎并配置相关参数。进行图像预处理,如调整尺寸、归一化等操作。将预处后的图像输入到TensorRT引擎中进行目标检测推理。 解析和处理推理结果,包括目标框的提取、类别预测和置信度计算等。构建和编译: 使用适当的构建工具进行配置。
2024-01-05 20:55:22 751KB TensorRT
1
手势识别YOLOV8 NANO,训练得到模型,转换成ONNX ,OPENCV DNN调用,支持C++,PYTHON,ANDROID开发
2024-01-04 16:05:44 29.68MB opencv dnn python android
1