Domain Specific Knowledge Graph Construction, 领域特定知识图构建(KGC)是一个活跃的研究领域,最近由于机器学习技术(如深度神经网络和单词嵌入)取得了令人印象深刻的进展。本书将以一种引人入胜和可访问的方式综合Web数据上的知识图结构。
2019-12-21 20:23:58 2.47MB 知识图谱 KG knowle 领域知识图谱
1
可参看博客:https://blog.csdn.net/luolan9611/article/details/88578720 视觉问题回答(VQA)需要联合图像和自然语言问题,其中许多问题不能直接或清楚地从视觉内容中得到,而是需要从结构化人类知识推理并从视觉内容中得到证实。该论文提出了视觉知识记忆网络(VKMN)来解决这个问题,它将结构化的人类知识和深层视觉特征无缝融入端到端学习框架中的记忆网络中。与现有的利用外部知识支持VQA的方法相比,本文更多地强调了两种缺失的机制。首先是将视觉内容与知识事实相结合的机制。 VKMN通过将知识三元组(主体,关系,目标)和深层视觉特征联合嵌入到视觉知识特征中来处理这个问题。其次是处理从问题和答案对中扩展出多个知识事实的机制。VKMN使用键值对结构在记忆网络中存储联合嵌入,以便易于处理多个事实。实验表明,该方法在VQA v1.0和v2.0基准测试中取得了可喜的成果,同时在知识推理相关问题上优于最先进的方法。
2019-12-21 20:14:13 8.39MB VQA VKMN 视觉知识记忆
1
该代码为知识图谱代码和可视化代码,经过测试,可以使用,调用的复旦大学知识工场的API。
2019-12-21 20:00:28 6KB API 知识图 DL Knowledge
1
A Guide to the Project Management Body of Knowledge 5th edition PMBOK Guide 项目管理知识体系指南 第5版 一本很好的项目管理指导书 是英文版的
2019-12-21 19:56:26 7.82MB PMBOK? Guide 5th
1
讲述alpha zero的原文,发表在nature。 A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo’s own move selections and also the winner of AlphaGo’s games. This neural network improves the strength of the tree search, resulting in higher quality move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved superhuman performance, winning 100–0 against the previously published, champion-defeating AlphaGo.
2019-12-21 18:51:39 3.84MB alpha zero
1